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Preface

The Second International Workshop on Automated Deduction in Geometry
(ADG ’98) was held in Beijing, China, August 1–3, 1998. An increase of interest
in ADG ’98 over the previous workshop ADG ’96 is represented by the notable
number of more than 40 participants from ten countries and the strong techni-
cal program of 25 presentations, of which two one-hour invited talks were given
by Professors Wen-tsün Wu and Jing-Zhong Zhang. The workshop provided the
participants with a well-focused forum for effective exchange of new ideas and
timely report of research progress. Insight surveys, algorithmic developments,
and applications in CAGD/CAD and computer vision presented by active re-
searchers, together with geometry software demos, shed light on the features of
this second workshop. ADG ’98 was hosted by the Mathematics Mechanization
Research Center (MMRC) with financial support from the Chinese Academy of
Sciences and the French National Center for Scientific Research (CNRS), and
was organized by the three co-editors of this proceedings volume.

The papers contained in the volume were selected, under a strict refereeing
procedure, from those presented at ADG ’98 and submitted afterwards. Most of
the 14 accepted papers were carefully revised and some of the revised versions
were checked again by external reviewers. We hope that these papers cover some
of the most recent and significant research results and developments and reflect
the current state-of-the-art of ADG.

We want to thank all those members of MMRC who contributed to the
local organization of ADG ’98 and the referees for their time and help. We also
want to acknowledge some of the previous workshops and conferences and the
corresponding publications listed below which have stimulated the continuing
activities on ADG.

– International Workshop on Automated Deduction in Geometry (ADG ’96)
(Toulouse, France, September 27–29, 1996) — LNAI, vol. 1360 (edited by
D. Wang), Springer-Verlag, Berlin Heidelberg New York, 1997

– Workshop on Algebraic Approaches to Geometric Reasoning (Castle of Wein-
berg, Austria, August 17–19, 1992) — Special issue of Annals of Mathematics
and Artificial Intelligence, vol. 13, nos. 1–2 (edited by H. Hong, D. Wang
and F. Winkler), Baltzer Sci. Publ., Amsterdam, 1995

– International Workshop on Mathematics Mechanization (Beijing, China,
July 16–18, 1992) — Proceedings (edited by W.-T. Wu and M.-D. Cheng),
Int. Academic Publ., Beijing, 1992

– Workshop on Computer-Aided Geometric Reasoning (INRIA Sophia-Anti-
polis, June 22–26, 1987) — Proceedings (edited by H. Crapo), INRIA Roc-
quencourt, France, 1987
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– International Workshop on Geometric Reasoning (Oxford, UK, June 30 –
July 3, 1986) — Special issue of Artificial Intelligence, vol. 37, nos. 1–3
(edited by D. Kapur and J. L. Mundy), MIT Press, Cambridge, 1988

– Asian Symposia on Computer Mathematics: ASCM ’98 (Lanzhou, China,
August 6–8, 1998) — Proceedings (edited by Z. Li), Lanzhou Univ. Press,
Lanzhou, 1998; ASCM ’96 (Kobe, Japan, August 20–22, 1996) — Proceed-
ings (edited by H. Kobayashi), Scientists Inc., Tokyo, 1996; ASCM ’95 (Bei-
jing, China, August 18–20, 1995) — Proceedings (edited by H. Shi and
H. Kobayashi), Scientists Inc., Tokyo, 1995

July 1999 Xiao-Shan Gao
Dongming Wang
Lu Yang
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Automatic Geometry Theorem-Proving and

Automatic Geometry Problem-Solving

Wen-tsün Wu

Institute of Systems Science, Academia Sinica
Beijing 100080, P. R. China

wtwu@mmrc.iss.ac.cn

1 Principle and Method

Studies in geometry involve both theorem-proving and problem-solving. So far
the latter is concerned, we may cite for example geometrical locus-determination
and geometrical constructions by ruler-compass which were much studied in
ancient Greece. In particular we may mention the regular polygon construction
and the three famous difficult problems of angle-trisection, cube-duplication and
circle-squaring.

A turning point of geometrical studies occurred in 1637 when R. Descartes
published his classic on geometry. The introduction of coordinate system turned
then geometrical studies to algebraic ones in replacing pure geometrical reason-
ings by manipulation of polynomials and solving of polynomial equations. This
paved the way to the final solutions of the geometrical-construction problems
mentioned above.

Our method of manipulating polynomials and solving arbitrary systems of
polynomial equations in the form of Well-Ordering Principle and Zero-Decompo-
sition Theorems permits to treat geometrical studies even in an automated way.
The germ of such studies as well as their wide-range applications lies in our gen-
eral method of polynomial equations-solving. To be precise, let the unknowns of
the polynomials in question be definite ones forming a finite setX and their coef-
ficients be in a fixed field K of characteristic 0. By a polynomial set (abbr. polset)
PS ⊂ K[X ] we shall mean one consisting of a finite number of non-zero poly-
nomials in K[X ] unless otherwise stated. For such a polset PS the solving of
equations PS = 0 is then equivalent to the determination of the set Zero(PS)
consisting of the totality of solutions of PS = 0 or zeros of PS in an arbitrary
extension field of K. For any polynomial G ∈ K[X ], we shall denote the set-
difference Zero(PS) \ Zero(G) by Zero(PS/G). We remark in passing that the
set Zero(PS) is nothing else but an affine algebraic variety, irreducible or not,
in the usual sense. Now the difficulty of solving polynomial equations arises in
essence from the fact that the polynomials in question are in general given in
confused order. The key point to overcome such difficulties is thus: The given
polset should be so manipulated in a way that the resulting re-arranged poly-
nomials will be in some well-ordered form for which the corresponding solutions
are almost self-evident and are closely related to those of the original ones to

X.-S. Gao, D. Wang, and L. Yang (Eds.): ADG’98, LNAI 1669, pp. 1–13, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



2 Wen-tsün Wu

be sought for. In fact, in the case where all polynomials are linear in the un-
knowns X , the usual elimination method (say the Gaussian one) is just such a
method which, after due manipulations, will lead to a set of well-ordered linear
forms from which the solutions of the corresponding equations are immediately
given.

With this understood we shall introduce a well-ordering procedure of poly-
nomials and polsets in the following way.

1. Ordering of Unknowns. First of all we shall arrange the unknowns X in
an arbitrary but fixed order, denoted henceforth by x1, x2, . . . , xn in the natural
order

x1 ≺ x2 ≺ · · · ≺ xn.

2. Partial Ordering of Polynomials. For a non-constant polynomial P ∈
K[X ] let xc be the unknown actually occurring in P with greatest subscript c.
Then P may be written in the canonical form below:

P = Ixd
c + J1x

d−1
c + · · ·+ Jd−1xc + Jd,

in which the coefficients I, Ji are themselves polynomials in K[x1, . . . , xc−1] with
I �= 0. We call c (> 0) the class of P , d (≥ 1) the degree of P , I (�= 0) the initial
of P , and the formal partial derivative ∂P/∂xc the separant of P . In case P is
a non-zero constant in K, we set the class of P to be 0, and leave the degree
etc. undefined. We now introduce a partial ordering for polynomials in K[X ]
first according to the class, and then to the degree.

3. Partial Ordering of Polsets of Particular Form. Consider now a polset
AS of particular form in which the polynomials may be arranged in an ascending
order:

A1 ≺ A2 ≺ · · · ≺ Ar. (1)

We suppose that either r = 1 and A1 is a non-zero constant in K, or r ≥ 1 with
corresponding classes ci of Ai steadily increasing:

0 < c1 < · · · < cr.
For technical reasons we shall require that for each pair (i, j) with 0 < j < i,
the degree of xcj in the initial Ii of Ai should be less than the degree of Aj .
Under such conditions the polset AS = {A1, . . . , Ar} is called an ascending
set (abbr. asc-set). The product of all the initials Ii (resp. all the initials and
separants) will be called the initial-product (resp. the initial-separant-product)
of AS. For any polynomial P ∈ K[X ], we shall get by successive divisions with
respect to Ar, . . . , A2, A1 a unique remainder R given in the form

R = Is1
1 · · · Isr

r P −
∑

i

QiAi,

with Qi ∈ K[X ], si (≥ 0) as small as possible, so that R is reduced with respect
to AS in the following sense: the degree of xci in R is less than that of Ai for
each i with 0 < i ≤ r. This remainder R will be denoted as Remdr(P/AS).
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A partial ordering for all asc-sets is now introduced which we shall not enter.
A consequence of the ordering is the following critical theorem:

A sequence of asc-sets steadily decreasing in order is necessarily finite.

4. Partial Ordering of Polsets. For any non-empty polset PS ⊂ K[X ] let
us consider asc-sets contained in PS which necessarily exist. Any such asc-set
of lowest ordering is called a basic-set of PS. We may then unambiguously in-
troduce a partial ordering for all polsets according to their basic-sets. Again a
critical theorem says that, the ordering of a polset will be lowered by adjoining
to it a polynomial reduced with respect to any basic-set of the given polset.
Furthermore, as mentioned above, such reduced polynomials may be gotten by
forming remainders of polynomials with respect to such basic-sets.

Our method of solving polynomial equations is based on the following obser-
vation.

Let AS be an asc-set as in (1). For r = 1 and A1 a non-zero constant in K
or c1 = 0 it is clear that Zero(AS) = ∅. In the general case Zero(AS) may also be
considered as well-determined in the following sense. Let U = {xj | j �= any ci}
be considered as an arbitrary parameter set. From Ai = 0 each xci may then
successively be considered as a well-defined algebraic function of xk with k < ci.
For given definite values in K of U , we may solve Ai = 0 successively for xci .
Hence in any case Zero(AS), and Zero(AS/G) too for any G ∈ K[X ], may be
considered as well-determined.

With the above understood our underlying principle and method of polyno-
mial equations-solving consist in determining an asc-set AS from a given polset
PS such that Zero(AS) is closely related to Zero(PS), which will give at least
a partial determination of an important part of Zero(PS) and serves to lead
to a complete determination of Zero(PS). By the critical theorems described
above such an asc-set may be gotten by successively enlarging the given polset
in adjoining remainders with respect to some relevant asc-sets.

The whole procedure of getting such an asc-set from a polset PS may be
given in the form of a concise diagram below:

PS = PS0 PS1 · · · PSi · · · PSm

BS0 BS1 · · · BSi · · · BSm = CS
RS0 RS1 · · · RSi · · · RSm = ∅.

(2)

In the scheme (2) all the remainder sets RSk are non-empty for k < m and we
have put

BSi = a basic set of PSi,
RSi = {Remdr(P/BSi) | P ∈ PSi \BSi},
PSi = PS0 ∪BSi−1 ∪RSi−1.

From the critical theorems the basic-sets BSi will be steadily decreasing in order
so that the procedure will end at some stage m with final RSm = ∅. The final
basic-set BSm = CS is then the asc-set as required and is called a characteristic
set (abbr. char-set) of the given polset PS. The importance of the notion of
char-set may be seen from the following theorem.
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Well-Ordering Principle. For the char-set CS of PS let IP (or ISP ) be the
initial-product (or the initial-separant-product) of the asc-set CS. Then

Zero(PS) = Zero(CS/IP )
⋃

Zero(PS ∪ {IP}), or (3)

Zero(PS) = Zero(CS/ISP )
⋃

Zero(PS ∪ {ISP}). (4)

By reasoning about PS ∪ {IP} (or PS ∪ {ISP}) in the same manner as PS
further and further we get finally the following theorems.

Zero-Decomposition Theorem. From a given polset PS one may determine
in an algorithmic way a set of asc-sets CSi (or CS′

j) with initial-products IPi (or
initial-separant-products ISP ′

j) such that

Zero(PS) =
⋃

i

Zero(ASi/IPi), or (5)

Zero(PS) =
⋃

j

Zero(AS′
j/ISP

′
j). (6)

Define an asc-set to be irreducible in some natural way; then we may refine
the above decomposition theorem to the following form:

Variety-Decomposition Theorem. From a given polset PS one may deter-
mine in an algorithmic way a set of irreducible asc-sets IRRk such that for some
so-called Chow basis CBk ⊂ K[X ] which may be determined algorithmically
from IRRk, we have

Zero(PS) =
⋃

k

Var[IRRk], (7)

in which Var[IRRk] = Zero(CBk) ⊂ Zero(IRRk).

These theorems furnish us a general method (to be called the char-set
method) for polynomial equations-solving. It serves also as the basis of appli-
cations to various kinds of problems arising from science and technology, besides
those from mathematics itself. For more information we refer to relevant pa-
pers due to various authors mainly at MMRC as well as a forthcoming book by
the present author. The book is entitled 〈〈Mathematics Mechanization: Geom-
etry Theorem-Proving, Geometry Problem-Solving, and Polynomial Equations-
Solving 〉〉 which will be published by Science Press, Beijing.

We have to point out that the idea of introducing ordering of unknowns
and polynomials as well as the elimination procedure for solving polynomial
equations were both originated in works of mathematicians in ancient China; see
Section 3 below. In following the line of thought of our ancestors and applying
some techniques of modern mathematics mainly due to J. F. Ritt we arrive
finally at the Zero-Decomposition Theorems which settle completely the problem
of polynomial equations-solving at least in some theoretical sense. We remark
also that the above is not the only way of ordering polynomials and polsets. In
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fact, in introducing partial orderings in some other manner, working in some
way as described in the Riquier-Janet theory on partial differential equations,
and proceeding somewhat parallel to the case of the char-set method, we arrive
finally at some notion which is equivalent to the well-known Gröbner basis of an
ideal. For more details we refer again to the writings mentioned above.

2 Applications and Examples

Among the applications which have been made in recent years by myself and my
colleagues notably at MMRC we may mention in particular the following:

– Automated Geometrical Constructions.
– Automated Determination of Geometrical Loci.
– Automated Discovering of Unknown Relations.
– Automated Design of Mechanisms.
– Automated CAGD (Computer-Aided Geometric Design).
– Automated Geometry Theorem-Proving and -Discovering.
– Automated Proving and Discovering of Inequalities.
– Automated Global Optimization.

For brevity we shall consider below the application to automated geometry
theorem-proving and thus also automated geometry theorem-discovering alone
in more details.

The creation of coordinate geometry turned the Euclidean fashion of proving
geometry theorems one-by-one by logical reasonings into the Cartesian fashion
of proving classes of geometry theorems as a whole by algebraic computations.
However, it is not evident at all whether a geometric statement, in whatever ge-
ometry under an axiomatic system, Euclidean, non-Euclidean, affine, projective,
etc., may be turned into polynomial equations or inequations (and eventually
also inequalities). It is true that this is indeed the case for most of the ordi-
nary geometries we are well-acquainted with. However, the proof of such a fact
is not trivial at all. On the other hand, in the hands of geometers notably in
the 19th century, the realm of geometry has been so broadened that we may
develop various kinds of geometries directly from number systems without any
reference to axiomatic systems, e.g. the Plückerian line geometry and geometries
in the sense of F. Klein. Even more, for differential geometries, one starts usually
in introducing curves, surfaces, and entities of geometrical interest directly by
equations. The present author is even ignorant of any axiomatic systems over
which some kind of differential geometry is relied upon.

This being understood we shall restrict ourselves to such geometry theorems
for which the hypothesis and conclusion are both expressible by equations and
inequations (eventually also inequalities), all in the form of polynomial ones,
leaving aside the possible underlying geometries and axiomatic systems. For
further simplification, we shall restrict ourselves to theorems of the form T =
{HYP,CONC}, for which the hypothesis and the conclusion are respectively given
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by the equations HYP = 0 and CONC = 0 with HYP ⊂K[X ], CONC ∈ K[X ], K
being a field of characteristic 0 and X = {x1, . . . , xn} as before.

The basic principle for proving theorems of the above type is as follows.
Each zero X0 in Zero(HYP ) is a geometrical configuration in eventually an

extended affine space K′n, with coordinates X , K′ being an extension field of K,
which verifies the hypothesis of the theorem T . The conclusion is true for such
a geometrical configuration if CONC = 0 at the corresponding zero X0. Proving
a geometrical theorem thus amounts to seeking for some significant part P of
Zero(HYP ) such that CONC = 0 on that part P . The theorems on zero-set
structures of Zero(HYP ) which give us methods of polynomial equations-solving
will serve to offer means of finding such part P and to verify whether CONC = 0
on P . In this sense our method of geometry theorem-proving may be considered
as a mere application of our general method of polynomial equations-solving.

Each of the theorems for polynomial equations-solving will thus lead to a
principle and a method of automated geometry theorem-proving.

Well-Ordering Principle (3) =⇒ Principle-Method I. For a given theorem
T = {HYP,CONC} let CS be a char-set of the hypothesis polset HYP and IP be
the initial-product of CS. Then

Remdr(CONC/CS) = 0 (8)

is a sufficient condition for

Zero(HYP/IP ) ⊂ Zero(CONC).

In other words (8) is a sufficient condition for the theorem T to be true so far

IP �= 0. (9)

Moreover, the condition (8) is also a necessary one for the above to be true in
case CS is an irreducible asc-set.

Zero-Decomposition Theorem (5) =⇒ Principle-Method II. For a given
theorem T = {HYP,CONC} let {ASi} be a set of asc-sets determined from the
hypothesis polset HYP such that

Zero(HYP ) =
⋃

i

Zero(ASi/IPi),

in which each IPi is the initial-product of the corresponding asc-set ASi. If

Remdr(CONC/ASi) = 0, (10)

then the theorem T will be true on that part Zero(ASi/IPi) of Zero(HYP ) or

Zero(ASi/IPi) ⊂ Zero(CONC). (11)

Conversely, if ASi is irreducible and the theorem T is true on the part
Zero(ASi /IPi) or (11) is true, then we have (10).
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Variety-Decomposition Theorem (7) =⇒ Principle-Method III. For a
given theorem T = {HYP,CONC} let {IRRk} be a set of irreducible asc-sets
determined from the hypothesis polset HYP such that

Zero(HYP ) =
⋃

k

Var[IRRk].

Then the theorem T will be true on that irreducible component Var[IRRk] if and
only if

Remdr(CONC/IRRk) = 0. (12)

We add some remarks below.
In Principle-Method I the condition (9) is usually inevitable for the theorem

T = {HYP,CONC} in question to be true. In that case we shall say that the
theorem T is generically true under the non-degeneracy conditions (9).

For theorems of form T = {HYP,CONC} Principles I–III give three different
methods of geometry theorem-proving. Principle I is the simplest to apply in that
geometrically uninteresting or even meaningless degeneracy cases IP = 0 have
been deprived off at the outset, though somewhat incomplete in that theorems
will only be proved in the generic sense. The method in Principle III is the
most complete in that no non-degeneracy conditions will be involved but it is
not so easy to apply. Remark however that it requires only the simple algebraic
verification of (12), but not the usual difficult determination of the Chow basis.

We have restricted ourselves to the case of K being of characteristic 0. How-
ever, so far theorem-proving is concerned, the proving of theorems in finite ge-
ometries for which the basic field K is of prime characteristic is of high interest
in itself. The more so since finite geometries are closely related to such techno-
logical problems in coding theory and cryptography. We shall nonetheless leave
this topic in referring only to some interesting original papers of D. Lin and
Z.-J. Liu.

In the above we have also restricted ourselves to theorems involving equations
and inequations alone. However, in the case of K being the real field R, theo-
rems involving inequalities are of high interest in themselves. It is well-known
that by A. Seidenberg’s technique we can reduce such theorems to those involv-
ing equations and inequations alone by introducing new unknowns if necessary.
In appearance the above Principle-Methods may still seems to be applicable.
However, the actual carrying-out becomes so intricate that only very limited
success has ever been achieved. Therefore we shall satisfy ourselves by stating
only the interesting theorem below.

8-Triads Theorem. From 8 mutually different points Ai, i = 1, . . . , 8, in cir-
cular order with Ai+8 = Ai, there may be formed 8 triads Ti = AiAi+1Ai+3,
i = 1, . . . , 8. If all of these triads are collinear, then generically all the 8 points
will lie on the same line.

Our methods permit to give the non-degeneracy conditions automatically
and explicitly. These conditions are however so intricate to have any evident
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geometrical meaning and to be foreseen. In the case of complex affine plane
there are thus ∞8 8-triad configurations such that all the points Ai are different
from each other and all the 8 triads AiAi+1Ai+3 are collinear but A1A2 · · ·A8

are not on the same line. The situation will however be entirely different if
we restrict the configurations to be in the real affine plane. In fact S.-C. Chou,
X.-S. Gao and others have proved the following beautiful theorem and discovered
all the possible degenerate 8-triad configurations in the real affine plane.

Theorem. In the real affine plane there exist no 8-triad configurations for
which Ai (i = 1, . . . , 8) are different from each other and all triads AiAi+1Ai+3

are collinear while A1A2 · · ·A8 are not on the same line.

Finally we remark that all the above are possible owing to the introduction
of coordinate systems so that our methods of polynomial manipulations become
available. There are so many beautiful theorems which cannot even be stated
without the intervention of coordinate systems. Among these we may cite, for
example, the syzygy-theorems of triads of points on a complex planar cubic curve
and the 27-line theorem of cubic surface in a complex projective space. Remark
that the last one has been considered as one of the gems hidden in the rag-bag of
projective-geometry theorems (quite beautiful, however) discovered in the 19th
century.

The study of geometrical problems, including in particular problems of geo-
metrical constructions and geometrical locus-determinations, may also in general
be reduced to polynomial equations-solving in introducing suitable coordinate
systems. Besides those problems in ancient Greek already mentioned at the be-
ginning of the present paper as well as the classical ones like the Appolonius
Problem and the Malfatti Problem, we shall mention a few further problems
below which have been notably studied by members of MMRC.

Zassenhaus Problem. Given 3 bisectors, whether interior or exterior, of the 3
angles of a triangle, construct the triangle.

It is trivial to construct bisectors of angles of a triangle by ruler-compass
alone. The converse, as stated in the above Zassenhaus Problem, is not an easy
matter. In fact, X.-S. Gao and D.-K. Wang gave the answer in negative in that
such triangles cannot be constructed by ruler-compass alone. The proof consists
in showing that the side-squares of the triangle should satisfy some irreducible
equations of degree 10 with coefficients in the given bisectors.

Erdos Problem. Given in the plane 10 points Aij (i, j = 1, . . . , 5; i < j),
determine 5 points Bi, i = 1, . . . , 5, such that for each of the above pair (i, j), Aij

is on the line BiBj .

The final answer due to H. Shi and H. Li is that there are generically 6 such
quintuples of points Bi which can be explicitly determined from the given Aij .

Pyramid Problem. Given a regular pyramid of square base, determine planes
which will cut the pyramid into a regular pentagon.
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The problem was solved by D.-K. Wang in giving a necessary and sufficient
condition for the pyramid to have such regular-pentagonal cuts. Such planar cuts,
in case existent, may be explicitly constructed. Moreover, in that case there will
be regular-star cuts too which may also be explicitly constructed.

We remark that, all the problems above are solved by our methods of polyno-
mial equations-solving, after some suitable coordinate system has been chosen.
Clearly an immense number of such problems may be treated in the same man-
ner. In fact, various problems arising from partial differential equations, celestial
mechanics, theoretical physics, and technologies have been successfully treated
in this way.

So far we have not mentioned at all the theorems (4) and (6) involving
separants. In fact, the concept of separant plays an important role in studying
singularities of algebraic varieties. Moreover, based on theorem (6), the present
author has shown that for optimum problems with real object function and real
restraint conditions all polynomial ones, there is some finite set of real values,
whose greatest or least value is just the greatest or least value of the original
optimum problem, so far it is supposed to exist. This gives in particular a general
method of solving problems in non-linear programming and proving a lot of
inequalities, algebraic, geometric, trigonometric, etc. For more details we refer
to relevant papers and a forthcoming book of the present author.

3 Some Historical Discussions

From the above we see that both geometrical theorem-proving and geometrical
problem-solving may be reduced to polynomial equations-solving which paves the
way to the grandiose state of wide applications. We owe this much to the classic
of Descartes in 1637. In his classic Descartes emphasized geometry problem-
solving instead of geometry theorem-proving and showed how such geometry
problem-solving may be reduced to polynomial equations-solving. Moreover, in
a posthumous work Descartes had even the idea of reducing any kind of problem-
solving, not merely geometrical ones, to the solving of polynomial equations in
the form of some general scheme. Below we shall reproduce some paragraphs
from a classic of G. Polya, viz. 〈〈Mathematical Discovery 〉〉. In that classic is
described such a rough outline of Cartesian scheme:

[[ First, reduce any kind of problem to a mathematical problem.
Second, reduce any kind of a mathematical problem to a problem of algebra.
Third, reduce any problem of algebra to the solution of a single equation. ]]

The third step may be further clarified as shown in the paragraph below
which we again reproduce from the above classic of Polya:

[[ Descartes advises us to set up as many equations as there are unknowns.
Let n stand for the number of unknowns, and x1, x2, . . . , xn for the unknowns
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themselves; then we can write the desired system of equations in the form

r1(x1, x2, . . . , xn) = 0,
r2(x1, x2, . . . , xn) = 0,
· · · · · ·

rn(x1, x2, . . . , xn) = 0,

where r1(x1, x2, . . . , xn) indicates a polynomial in x1, x2, . . . , xn, and the left-
hand sides of the following equations must be similarly interpreted. Descartes
advises us further to reduce this system of equations to one final equation. ]]

It seems that Descartes was absolutely absurd in reducing any kind of prob-
lem to one of polynomial equations-solving. In Descartes’ time differential cal-
culus had not yet been discovered so it is natural that Descartes had no idea
about differential equations and other kinds of equations but the polynomial
ones. However, even a problem can be so reduced to polynomial equations, the
number of equations may not be the same as the number of unknowns: it may be
smaller or greater. Even the numbers of equations and unknowns are the same,
how to reduce such a system of polynomial equations to the solving of equa-
tions involving a single unknown is not at all evident and is actually entirely
non-trivial. Even if it can be so reduced, there may occur redundant solutions
or loss of solutions. As pointed out by Polya in the above-mentioned classic, the
reduced equations in single unknowns may furnish eventually the whole set of
solutions only “in general,” e.g. in the “regular case.” However, the clarification
of “in general” or “regular case” will be far from being trivial, as may be seen
already from the simplest case in which ri are all linear in the x’s. In fact, this
is what we have tried to achieve in the form of Zero-Decomposition Theorems
as described in Section 1.

However, in spite of the apparent absurdity of Descartes’ Program, the idea
of Descartes is of highest significance to the development of mathematics. In this
respect let us reproduce some paragraph again from the same classic of Polya:

[[ Descartes’ project failed, but it was a great project and even in its failure it
influenced science much more than a thousand and one little projects which hap-
pened to succeed. Although Descartes’ scheme does not work in all cases, it does
work in an inexhaustible variety of cases, among which there is an inexhaustible
variety of important cases. ]]

In fact, now-a-days we see that there are really inexhaustible problems from
mathematics, from sciences, from technologies, etc. which will ultimately be re-
duced to polynomial equations-solving. A few of such particular problems have
been indicated in Section 2 above. Now, among all kinds of systems of equa-
tions to be solved, those of polynomial forms are clearly the simplest, and the
most fundamental ones, but at the same time a problem entirely non-trivial at
all. Among all kinds of problems in mathematics, the problem of polynomial
equations-solving should, therefore, be considered as one of primary importance
to be settled with highest priority.
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Let us consider now the state of geometry problem-solving and geometry
problem-solving in our ancient China. For this sake let us reproduce some para-
graphs from a previous paper of the present author appeared in
〈〈Proc. ATCM ’95 〉〉 (Singapore, 1996), pp. 66–72:

[[ The geometry theorem-proving in ancient Greece is well-known. As for
in ancient China, one considered usually geometry problem-solving rather than
geometry theorem-proving. Most of geometry problems to be solved arose from
practical requirements. We may cite in particular:

(I) Problems arising from measurements, . . .
(II) Problems about area and volume determination, . . .
(III) Problems involving Gou-Gu Form (i.e. a right-angled triangle), . . . e.g.

the determination of such forms with 3 sides in rational ratios.
(IV) Problems arising from actual lifes, . . .
A lot of such problems with their solutions appeared already in the two

earliest classics fortunately preserved up to the present day, viz. 〈〈Nine Chapters
of Arithmetic 〉〉 completed in 1c B.C., and 〈〈Zhou Bi Mathematics Manuel 〉〉,
believed to be no later than 100 B.C. To these two classics we may add the more
important classic 〈〈Annotations to Nine Chapters 〉〉 due to Liu Hui in 263 A.D.

The results of the geometry problems solved were usually expressed in the
form of Shui which may sometimes be interpreted as theorems in the form of
explicit formulas.

Instead of set of axioms the ancient Chinese formulated rather some simple
and plausible principles and then proved the geometry theorems in the form of
formulas or solved the geometry problems by logical reasoning.

The simplest one of such principles is perhaps the Out-In Complementary
Principle: When a planar (or a solid) figure be cut into pieces, moved to some-
where else, and combined together, the area (or volume) of the figure will remain
the same.

Diverse applications including geometry formula-proving and geometry prob-
lem-solving have been made by means of this seemingly trivial principle in an
elegant and sometimes unbelievably striking manner. . . .We may cite also the
proof of the general Gou-Gu formula (i.e. the Pythagorous Theorem) based on
the above Principle. The proof appeared in 〈〈Zhou Bi 〉〉 and was attributed to
some scholar Shang Gao in year around 1122 B.C.
· · · · · ·
A turning point about geometry problem-solving occurred in Song

Dynasty (+960, +1274) and Yuan Dynasty (+1271, +1368). During that period
the notions of Heaven Element, Earth Element, etc. (equivalent to the present
day unknowns x, y, etc.), together with allied notions of polynomials and meth-
ods of elimination, were introduced. This furnishes a systematic way of solving
geometry problems in the following way. Designate the unknowns of the geom-
etry problems to be determined by Heaven Element, Earth Element, etc. The
geometry conditions about the geometry entities involved will be turned into
some algebraic relations between them which are usually equivalent to polyno-
mial equations in modern form. By eliminating the unknown elements in succes-
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sion we get finally equations each time in one alone of the unknown elements.
When the known data are in numerical values, what is usually the case, we may
solve these equations in succession by means of methods of numerical solving
developed in Song Dynasty. The results will give then the required solutions
of the geometry problems in question. We remark in passing that polynomial
equations-solving instead of geometry theorem-proving was the main theme of
studies throughout the whole history of mathematics in ancient China.

The method created in that period was called the Heaven Element Method. It
was in essence a method of algebrization of geometry which permits to reduce in
relatively trivial manner geometry problems to the algebraic problems of solving
of systems of polynomial equations. Elimination method, which appeared already
in 〈〈Nine Chapters 〉〉 for the solving of systems of linear equations (equivalent to
present day Gaussian elimination) was also developed to the solving of general
systems of polynomial equations in the period of Song-Yuan Dynasties. Numer-
ous examples may be found in some still existent classics. Unfortunately the
development of Chinese ancient mathematics stopped at this crucial moment
during the period of Yuan and Ming Dynasties.
· · · · · ·
The algebrization of geometry, created in ancient China and stopped in

the 14th century, was revived in Europe in the 17th century. It was even system-
atized to the form of analytic geometry owing to the creation of R. Descartes.
Descartes emphasized in his 1637 classic on geometry the geometry problem-
solving rather than geometry theorem-proving. This was just in the same spirit
as in ancient China. The analytic geometry also permits to prove geometry the-
orems by mere computations in contrast to the proving by purely geometrical
reasoning of Euclid. The classic of Descartes showed also the way of reducing ge-
ometry problems-solving to polynomial equations-solving, which was just what
the Chinese scholars in Song and Yuan Dynasties had tried to do.

In a posthumous work Descartes had founded some doctrine in saying that
all problems can be reduced to the solving of problems in mathematics, then
to problems in algebra, then to problems of polynomial equations-solving, and
finally to problems of solving algebraic equations in single unknowns. In compar-
ing with works of our ancestors, we see that our ancestors and Descartes were
on the same lines of thought in the development of mathematics.

The computational method of solving geometry problems (including proving
geometry theorems) in reducing them to the solving of polynomial equations
lacked however a general way of dealing with the associated system of equations
usually in embarrassing confused form.

In recent years the Chinese mathematicians, mainly in MMRC (Math. Mech.
Res. Center, Institute of Systems Science, Chinese Academy of Sciences), have
developed a general mechanization method for solving of arbitrary systems of
polynomial equations which permits to be applied to geometry problem-solving,
in particular geometry theorem-proving. Our achievements may be considered
as a continuation of what our ancestors had founded as well as partial accom-
plishments of Descartes doctrine.
· · · · · · ]]
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In conclusion, it would be interesting in comparing the way of Descartes in
establishing equations for problem-solving with the way of our ancestors in intro-
ducing unknowns called Heaven Element, etc. and then establishing equations
for problem-solving as described above. In a word, it may be said that Chinese
ancient mathematics in the main was developed along the way as indicated in
Descartes’ Program, and conversely, Descartes’ Program may be considered as
an overview of the way of developments of Chinese ancient mathematics.
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Abstract. Many problems arising in real geometry can be formulated
as first-order formulas. Thus quantifier elimination can be used to solve
these problems. In this note, we discuss the applicability of implemented
quantifier elimination algorithms for solving geometrical problems. In
particular, we demonstrate how the tools of redlog can be applied to
solve a real implicitization problem, namely the Enneper surface.

1 Introduction

Since Tarski introduced the first quantifier elimination algorithm for the real
numbers in the 1930’s (cf. [21]), several other algorithms have been developed.
Only some of them are implemented and widely available. Among them there
are, for instance, the quantifier elimination by partial cylindrical algebraic de-
composition implemented in the C-program qepcad, the quantifier elimination
by real root counting implemented in the module qerrc within the Modula II
computer algebra system mas and the quantifier elimination by virtual substitu-
tion implemented in the reduce-package redlog. Whereas qepcad and qerrc
provide a complete quantifier elimination procedure, the quantifier elimination
of redlog is restricted in the degree of the quantified variables.

The naive approach to use one of the implemented quantifier elimination
algorithms for solving a problem often fails in practice. Firstly, the programs
can fail due to the limitations of computing time and memory. Secondly, the
chosen quantifier elimination algorithm may not be able to handle the wanted
class of problems.

Nevertheless it is possible to solve non-trivial problems using the imple-
mented quantifier elimination algorithms. In general this requires both a combi-
nation of the available algorithms and a careful formulation of the problem as a
first-order formula according to the chosen quantifier elimination method.

We give solutions of problems cited in the literature and compare the re-
sults of the different elimination procedures. In particular we discuss the real
implicitization of the Enneper surface.
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2 The General Framework

We consider multivariate polynomials f(u, x) with rational coefficients, where
u = (u1 . . . , um) and x = (x1, . . . , xn). We call u parameters and we call x
main variables. Atomic formulas are polynomial equations f = 0, polynomial
inequalities f � 0, f � 0, f > 0, f < 0, and f �= 0. Quantifier-free formulas
are built from atomic formulas by combining them with the boolean connec-
tors “¬,” “∧,” and “∨.” Existential formulas are of the form ∃x1 . . . ∃xnψ(u, x),
where ψ is a quantifier-free formula. Similarly, universal formulas are of the form
∀x1 . . .∀xnψ(u, x). A prenex first-order formula has several alternating blocks of
existential and universal quantifiers in front of a quantifier-free formula, the
matrix of the prenex formula.

The real quantifier elimination problem can be phrased as follows: Given a
formula ϕ, find a quantifier-free formula ϕ′ such that both ϕ and ϕ′ are equivalent
in the domain of the real numbers. A procedure computing such a ϕ′ from ϕ is
called a real quantifier elimination procedure.

A background theory is a set of atomic formulas considered conjunctive. Two
formulas ϕ and ϕ′ are equivalent wrt. a background theory Θ, if and only if

∀
(∧

Θ −→ (ϕ←→ ϕ′)
)
,

where ∀ denotes the universal closure. Notice, that the formula x2 − x = 0
contained in a background theory, does not imply a multiplicative idempotency
law, but only describes an equation for the variable x.

A generic quantifier elimination procedure assigns to a formula ϕ a quantifier-
free formula ϕ′ and a background theory Θ′, such that ϕ and ϕ′ are equivalent
wrt. the background theory Θ′. The computed background theory contains only
negated equations. Hence the set

{
a ∈ R

m
∣∣∣ ¬(ϕ′(a)←→ ∃xϕ(a, x)

)}

has measure zero. Notice, that each quantifier elimination procedure provides
also a generic quantifier elimination assigning ∅ to Θ′. However, the computation
of an appropriate Θ′ leads in many cases to simpler quantifier-free equivalents
and results in a considerable speed-up of the running times. Moreover, in the
framework of automatic proving in real geometry generic quantifier elimination
allows us to find sufficient conditions automatically, cf. [13] for details.

3 Quantifier Elimination Methods

In this section we sketch the three most important implemented quantifier-
elimination algorithms. For a more detailed overview over these
algorithms, cf. [14].
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3.1 Quantifier Elimination by Partial Cylindrical Algebraic
Decomposition

Cylindrical algebraic decomposition (cad), cf. [6,1], is the oldest and most elab-
orate implemented real quantifier elimination method. It has been developed
by Collins and his students starting in 1974. During the last 10 years partic-
ularly Hong made very significant theoretical contributions that improved the
performance of the method dramatically, cf. [16,17], resulting in partial cad,
cf. [7]. Hong has implemented partial cad in his program qepcad based on
the computer algebra C-library saclib. qepcad is not officially published but
available from Hong on request. Brown has contributed the latest very successful
improvements to the algorithm, cf. [4]. Unfortunately, the improved version was
not available when we made the computations for this article.

We sketch the basic ideas of cad: Suppose we are given an input formula

ϕ(u1, . . . , um) ≡ Q1x1 . . .Qnxnψ(u1, . . . , um, x1, . . . , xn), Qi ∈ {∃, ∀}.

Let F be the set of all polynomials occurring in ψ as left hand sides of atomic
formulas. Call C ⊆ Rm+n sign invariant for F , if every polynomial in F has
constant sign on all points in C. Then ψ(c) is either “true” or “false” for all
c ∈ C.

Suppose we have a finite sequence Π1, . . . , Πm+n with the following proper-
ties:

1. Each Πi is a finite partition of Ri into connected semi-algebraic cells. For
1 � j � n each Πm+j is labeled with Qj .

2. Πi−1 consists for 1 < i � m + n exactly of the projections of all cells in
Πi along the coordinate of the i-th variable in (u1, . . . , um, x1, . . . , xn). For
each cell C in Πi−1 we can determine the preimage S(C) ⊆ Πi under the
projection.

3. For each cell C in Πm we know a quantifier-free formula δC(u1, . . . , um)
describing this cell.

4. Each cell C in Πm+n is sign invariant for F . Moreover for each cell C in
Πm+n, we are given a test point tC in such a form that we can determine
the sign of f(tC) for each f ∈ F and thus evaluate ψ(tC).

A quantifier-free equivalent for ϕ is obtained as the disjunction of all δC for
which C in Πm is valid in the following recursively defined sense:

1. For m � i < m + n, we have that Πi+1 is labeled:
(a) If Πi+1 is labeled “∃,” then C in Πi is valid if at least one C′ ∈ S(C) is

valid.
(b) If Πi+1 is labeled “∀,” then C in Πi is valid if all C′ ∈ S(C) are valid.

2. A cell C in Πm+n is valid if ψ(tC) is “true.”

Partial cylindrical algebraic decomposition (pcad) is an improved version of
cad. It takes the boolean structure of the input formula into account. cad and
also pcad is doubly exponential in the number of all variables.
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3.2 Quantifier Elimination by Virtual Term Substitution

The virtual substitution method dates back to a theoretical paper by Weispfen-
ning in 1988, cf. [22]. During the last five years a lot of theoretical work has been
done to improve the method, cf. [18,23,11]. The method is implemented within
the reduce package redlog by the author and Sturm, cf. [10].

The applicability of the method in the form described here is restricted to
formulas in which the quantified variables occur at most quadratically. Moreover
quantifiers are eliminated one by one, and the elimination of one quantifier can
increase the degree of other quantified variables. On the other hand there are
various heuristic methods included for decreasing the degrees during elimination.
One obvious example for such methods is polynomial factorization.

For eliminating the quantifiers from an input formula

ϕ(u1, . . . , um) ≡ Q1x1 . . .Qnxnψ(u1, . . . , um, x1, . . . , xn), Qi ∈ {∃, ∀}
the elimination starts with the innermost quantifier regarding the other quanti-
fied variables within ψ as extra parameters. Universal quantifiers are handled by
means of the equivalence ∀xψ ←→ ¬∃x¬ψ. We may thus restrict our attention
to a formula of the form

ϕ∗(u1, . . . , uk) ≡ ∃xψ∗(u1, . . . , uk, x),

where the um+1, . . . , uk are actually xi quantified from further outside.
We fix real values a1, . . . , ak for the parameters u1, . . . , uk. Then all poly-

nomials occurring in ψ∗ become linear or quadratic univariate polynomials in x
with real coefficients. So the set

M = { b ∈ R | ψ∗(a1, . . . , ak, b) }
of all real values b of x satisfying ψ∗ is a finite union of closed, open, and half-
open intervals on the real line. The endpoints of these intervals are among ±∞
together with the real zeros of the linear and quadratic polynomials occurring
in ψ∗.

Candidate terms α1, . . . , αr for the zeros can be computed uniformly in u1,
. . . , uk by the solution formulas for linear and quadratic equations. For open and
half-open intervals, we add expressions of the form α± ε, where α is a candidate
solution for some left-hand side polynomial. The symbol ε stands for a positive
infinitesimal number. Together with the formal expressions∞ and −∞ all these
candidate terms form an elimination set. This means M is non-empty if and only
if the substitution of at least one element of the elimination set satisfies ψ∗. After
substitution of formal expressions possibly involving square roots, ε, or ±∞,
we rewrite the substitution result in such a way that it does not contain any
fractions nor one of these special symbols. This process of substituting a term and
rewriting the formula is called virtual substitution. By disjunctively substituting
all candidates into ψ∗ we obtain a quantifier-free formula equivalent to ∃xψ∗.

For practical applications this method, of course, has to be refined by a
careful selection of smaller elimination sets and by a combination with powerful
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simplification techniques for quantifier-free formulas, cf. [11] for details. There
is a variant of the virtual substitution method for generic quantifier elimination,
cf. [13].

Quantifier elimination by virtual substitution is doubly exponential in the
number of quantifier blocks but only singly exponential in the number of quan-
tified variables. The number of parameters only plays a minor role in the com-
plexity.

3.3 Quantifier Elimination by Real Root Counting

The basis for this quantifier elimination method is a theorem on real root count-
ing found independently by Becker and Wörmann, cf. [2,3], and Pedersen, Roy,
and Szpirglas, cf. [19,20]. It is based on a result for counting real zeros of uni-
variate polynomials found by Hermite, cf. [15].

Let I ⊆ R[x1, . . . , xn] be a zero-dimensional ideal. For g ∈ R[x1, . . . , xn]
consider the symmetric quadratic form Qg =

(
trace(mgbibj )

)
1�i,j�d

on
the linear R-space S = R[x1, . . . , xn]/I, where {b1, . . . , bd} ⊆ S is a basis,
and the mh : S → S are linear maps defined by mh(f + I) = (hf) + I.
Let s be the signature of Qg, and denote by n+ and n− the number of real
roots of I at which g is positive or negative, respectively. Then n+−n− =
s.

The use of a Gröbner basis of the ideal I allows to obtain a basis of S, and to
perform arithmetic there, cf. [5], thus obtaining the matrix Qg.

This approach can be extended to obtain the exact number of roots under a
side condition, and can be moreover extended to several side conditions:

Let F , {g1, . . . , gk} ⊆ R[x1, . . . , xn] be finite, and assume that I = Id(F )
is zero-dimensional. Denote by N the number of real roots a ∈ Rn of F
for which gi > 0 for 1 � i � k. Define

Γ ({g1, . . . , gk}) = { ge1
1 · · · gek

k | (e1, . . . , ek) ∈ {1, 2}k }.
Then defining Qg as above we have 2kN =

∑
γ∈Γ ({g1,...,gk}) sig(Qγ).

For real quantifier elimination, this root counting has to be further extended
to multivariate polynomials with parametric coefficients in such a way that it
will remain correct for every real specialization of the parameters including spe-
cializations to zero. This task has been carried out by Weispfenning using com-
prehensive Gröbner bases, cf. [24].

The case of ideals that have a dimension greater than 0 is handled by re-
cursive calls of the approach for zero-dimensional ideals: We construct from one
polynomial system several polynomial systems in such a way, that each of the
systems has either a smaller number of variables or a smaller dimension.

The complete method has been implemented by the author within the pack-
age qerrc of the computer algebra system mas, cf. [9]. A variant for generic
quantifier elimination is under development.
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4 Simplification Methods

Simplification of formulas means to compute to a given formula an equivalent
one, which is simpler. The simplification of the input formulas and intermediate
results are very important for a successful application of quantifier elimination by
virtual substitution and for quantifier elimination by real root counting. qepcad
does not depend heavily on simplification of formulas, because formulas are
used only for input and output. For a detailed description of the simplification
algorithms sketched in this section and a discussion of the notion of simple
formulas, cf. [11].

4.1 The Standard Simplifier

The standard simplifier is a fast, though sophisticated, simplifier for quantifier-
free formulas. It was developed for the implementation of the quantifier elimina-
tion by virtual term substitution in the redlog package. The standard simplifier
was designed to be called very often, for instance, after each elimination step.
Beside the simple methods to remove boolean constants and to keep only one of
a set of identical subformulas, it implements three main strategies:

Firstly, it simplifies the atomic formulas. All right hand side of atomic formu-
las are normalized to zero. The left hand side polynomials are normalized to be
primitive over Z in such a way that the highest coefficient wrt. a fixed term order
is positive. Furthermore, we drop irrelevant factors of the polynomials. Trivial
square sums are detected to be greater than zero or not less than zero, respec-
tively. Optionally, we explode atomic formulas by decomposing the polynomial
additively or multiplicatively.

Secondly, smart simplification is applied to conjunctions and disjunctions of
atomic formulas: Each pair of atomic formulas involving identical left-hand sides,
is replaced by “true,” “false,” or by one atomic formula using an appropriate
relation. Similarly, this method can be applied to some pairs of atomic formulas
which differs only in the absolute summand of the left-hand side polynomial.

Thirdly, the techniques used for the smart simplification of flat formulas are
applied to nested formulas. This is done by constructing an implicit background
theory for each boolean level of the formula.

The standard simplifier offers the option to simplify a formula wrt. a back-
ground theory. The output formula is then equivalent to the input formula
wrt. the given background theory.

4.2 Simplification of Boolean Normal Forms

For the simplification of boolean normal forms we use two further techniques
additionally to the techniques used in the standard simplifier.

The generalized subsumption allows us to drop conjunctions of a cnf: Let ti
terms and ϕi, ρi, ρ

′
i ∈ {<,�,=,�,�, >}. Then

(t1 ρ1 0 ∧ . . . ∧ tn ρn 0) ∨ (t1 ρ′1 0 ∧ . . . ∧ tn ρ′n 0 ∧ . . .)
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can be simplified to (t1 ρ1 0 ∧ . . . ∧ tn ρn 0), if ti ρ′i 0 −→ ti ρi 0.
The generalized cut combines two conjunctions combined disjunctively into

one conjunction: if (ti ρi 0 ∨ ti ρ
′
i 0)←→ ti σi 0 then the disjunction

(t1 ρ1 0 ∧ t2 ρ2 0 ∧ . . . ∧ tn ρn 0) ∨ (t1 ρ′1 0 ∧ t2 ρ2 0 ∧ . . . ∧ tn ρn 0)

can be simplified to (t1 σ1 0 ∧ t2 ρ2 0 ∧ . . . ∧ tn ρn 0). In our implemen-
tation, not all possible applications of the generalized cut and the generalized
subsumption are performed. We only apply the simplifications in cases, where the
respective implication can be decided independently of the terms ti. Analogous
simplification rules hold for conjunctions of disjunctions.

4.3 The Gröbner Simplifier

The Gröbner simplifier is an advanced method for the simplification of boolean
normal forms. The main technique used for this method is the computation of a
Gröbner basis for deciding the ideal membership test, cf. [5]. Let F be a set of
polynomials and G a Gröbner basis of F . Then the Gröbner simplifier replaces

∧

f∈F

f = 0 ∧
∧

h∈H

h ρh 0 by
∧

f∈G

f = 0 ∧
∧

h∈H

NfG(h) ρh 0.

Using a radical membership test, we can optionally replace the input formula by
false, if h ∈ Rad(F ) and ρh ∈ {<, �=, >}.

There is, of course, a variant which simplifies disjunctions of atomic for-
mulas. Conjunctive and disjunctive normal forms are simplified essentially by
applying the Gröbner simplifier to each of the constituents. Additionally there
are strategies to relate information contained in different constituents. For the
simplification of an arbitrary formula, we compute a cnf or a dnf first. We
have implemented a variant of the Gröbner simplifier which automatically de-
cides, whether to compute a cnf or a dnf. This decision is based on a heuristic
for estimating which of the normal forms is larger. Like the standard simplifier
the Gröbner simplifier can simplify a formula wrt. a background theory.

Although the Gröbner simplifier operates on a boolean normal form, we con-
sider it as a general simplification method. It turned out that in many cases the
result of the Gröbner simplification is simpler than the input formula.

We illustrate the technique by means of a very simple example: Consider the
input formula xy + 1 �= 0 ∨ yz + 1 �= 0 ∨ x− z = 0, which can be rewritten as

xy + 1 = 0 ∧ yz + 1 = 0 −→ x− z = 0.

Reducing the conclusion modulo the Gröbner basis {x−z, yz+1} of the premises,
we obtain the equivalent formula xy + 1 = 0 ∧ yz + 1 = 0 −→ 0 = 0, which can
in turn be easily simplified to “true.”
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4.4 The Tableau Method

Although the standard simplifier combines information located on different lev-
els, it preserves the basic boolean structure of the formula. The Gröbner simpli-
fier computes a boolean normal from and thus it changes the boolean structure
completely. The tableau method, in contrast, provides a technique for changing
the boolean structure of a formula slightly by constructing case distinctions.
There are three variants of tableau simplifiers:

Given a formula ϕ and a term t the tableau simplifier constructs the following
case distinction:

(t = 0 ∧ ϕ) ∨ (t > 0 ∧ ϕ) ∨ (t < 0 ∧ ϕ).

This formula is then simplified with the standard simplifier. Even though the
constructed case distinction is about three times larger than the original formula,
in some cases the simplified equivalent is much smaller than the original formula.

The iterative tableau simplifier chooses automatically an appropriate term t
by trying all terms contained in ϕ. The result is then either the original formula
or the best result obtained by the tableau simplifier, depending on which one is
simpler. The automatic tableau simplifier applies the iterative tableau as long as
the output is simpler than the input.

5 REDLOG

redlog is a reduce package implementing a computer logic system, cf. [10]. It
provides algorithms to deal with first-order logic formulas over various languages
and theories. Beside the theory of real closed fields there are algorithms for the
theory of discretely valued fields [12] and algebraically closed fields. redlog
provides an implementation of the quantifier elimination by virtual substitution
including variants for generic quantifier elimination, extended quantifier elimi-
nation, and linear optimization using quantifier elimination techniques. There
are also interfaces to qepcad and qerrc available such that these packages can
be called from redlog and the results are available to be further processed.
All simplification algorithms discussed in this note are available in redlog. Be-
sides these important algorithms redlog provides many tools for normal form
computations, constructing, analyzing, and decomposing formulas. The redlog
source code and documentation are freely available on the www.1

6 Examples

By means of examples we discuss in this section the applicability of quanti-
fier elimination to some problems taken from various scientific research areas.
We compare the timings of the three considered implementations. Furthermore
1 http://www.fmi.uni-passau.de/~redlog/
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we will give some hints, how to apply quantifier elimination, even if the naive
approach fails.

In this section we allow ourselves to use not only prenex formulas but also
general first-order formulas, i.e. boolean combinations of prenex formulas. Fur-
thermore, we use the implication ⇒ and the equivalence ⇔ inside formulas.
Notice, that these general formulas can be easily transformed in prenex formu-
las containing only the boolean connectors ∧ and ∨.

All example computations mentioned in this section have been performed on
a sun Ultra 1 Model 140 workstation using 32 MB of memory.

6.1 Real Implicitization

For n < m let f : Rn → Rm be a rational map with the component func-
tions pi/q, where pi, q ∈ R[x1, . . . , xn] for 1 � i � m. The image f(Rn) of f is a
definable and hence semi-algebraic subset of Rm described by the formula

∃x1 . . . ∃xn

(
q(x1, . . . , xn) �= 0 ∧

m∧

i=1

pi(x1, . . . , xn) = uiq(x1, . . . , xn)
)
.

Our aim is to obtain a quantifier-free description of f(Rn) in the
variables u1, . . . , um, preferably a single equation, which would provide an im-
plicit definition of f .

Example 1. Descartes’ folium d : R → R2 is given by the component functions
3x1/(1 + x3

1) and 3x2
1/(1 + x3

1) for u1 and u2, cf. [8]. For obtaining an implicit
form we apply quantifier elimination to

∃x1

(
1 + x3

1 �= 0 ∧ 3x1 = u1(1 + x3
1) ∧ 3x2

1 = u2(1 + x3
1)

)
.

qepcad obtains after 1 s the result u3
1 − 3u1u2 + u3

2 = 0. qerrc obtains
after 1.6 s an elimination result with 7 atomic formulas. This can be automati-
cally simplified to the qepcad result using the Gröbner simplifier. redlog fails
on this example due to a violation of the degree restrictions. After simplifying
the matrix of the formula with the Gröbner simplifier for cnf’s we can eliminate
the quantifier with redlog. The output formula computed in 0.3 s contains 21
atomic formulas.

Example 2. The Whitney Umbrella is given by

(x1, x2) �→ (x1x2, x2, x
2
1).

qepcad produces in 1 s the result u3 � 0 ∧ −u2
1 +u2

2u3 = 0. Quantifier elimina-
tion by virtual substitution (qevts) produces in 0.01 s the much longer result

u3 � 0 ∧ (u2
1 − u2

2u3 = 0 ∧ u1u2 � 0 ∨ u2
1 − u2

2u3 = 0 ∧ u1u2 � 0).

However, including a Gröbner simplification we yield in 0.03 s the same result as
produced by qepcad. Using qerrc we get the following quantifier-free equiva-
lent in 0.8 s:

u2 �= 0 ∧ −u2
1 + u2

2u3 = 0 ∨ u1 = 0 ∧ u2 = 0 ∧ u3 + 1 �= 0 ∧ u3 � 0.
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6.2 Automatic Theorem Proving in Geometry

Example 3 (Steiner-Lehmus theorem, variant). Assume that ABC is a triangle
such that AB > AC. Then the angle bisector from B to AC is longer than the
angle bisector from C to AB (i.e., the longer bisector goes to the shorter side).

In its original form, the Steiner-Lehmus theorem states that any triangle with
two equal internal bisectors is isosceles. Its contrapositive follows immediately
from the variant above.

We put A = (−1, 0), B = (1, 0), and C = (x0, y0) with y0 > 0. By M = (0, b)
we denote the center and by c the radius of the circumcircle.

The bisectors are constructed using the geometrical theorem proved as Ex-
ample 4: Let V = (0, b − c) be the point below the x-axis on the circumcircle
having equal distance to A and B. Then the angle bisector from C to AB is
obtained as CX , where X = (x, 0) is the intersection of CV and AB. The angle
bisector from B to AC is obtained analogously: Let W = (x1, y1) be the point
on the circumcircle with equal distance to A and C lying “west” of the line AC.
Let Y = (x2, y2) be the intersection of BW and AC. Then the angle bisector
is BY .

Our algebraic translation obtained this way reads as follows:

∀b∀c∀x∀x1∀y1∀x2∀y2

(
y1(x0 + 1) > x1y0 ∧ y0 > 0 ∧ c > 0 ∧

c2 = 1 + b2 ∧ c2 = x2
0 + (y0 − b)2 ∧ x

(
y0 + (c− b)

)
= x0(c− b) ∧

x2
1 + (y1 − b)2 = c2 ∧ (x1 + 1)2 + y2

1 = (x1 − x0)2 + (y1 − y0)2 ∧
(x1 − 1)y2 = y1(x2 − 1) ∧ (x0 + 1)y2 = y0(x2 + 1) ∧
4 > (x0 + 1)2 + y2

0 −→ (x − x0)2 + y2
0 < (x2 − 1)2 + y2

2

)
.

Using qevts we obtain after 74 s an elimination result ϕ∗ containing 243 atomic
formulas together with the subsidiary conditions

ϑ∗ ≡ x2
0 + 2x0 + y2

0 + 1 �= 0 ∧
x2

0 − 2x0 + y2
0 − 3 �= 0 ∧ x0 + 1 �= 0 ∧ x0 �= 0 ∧ y0 �= 0.

qepcad proves within 250 s that ϑ∗ −→ ϕ∗, while qevts, qerrc fail doing so.

Example 4. Let M be the center of the circumcircle of a triangle ABC. Then
∠ACB = ∠AMB/2 (see Figure 1).

Choosing coordinates A = (−a, 0), B = (a, 0), C = (x0, y0), and M = (0, b)
and encoding angles into tangents, an algebraic translation of this problem reads
as follows:

∀x∀t1∀t2∀t∀b
(
c2 = a2 + b2 ∧ c2 = x2

0 + (y0 − b)2 ∧
y0t1 = a + x0 ∧ y0t2 = a− x0 ∧ (1− t1t2)t = t1 + t2 −→ bt = a

)
.

Both qepcad and qerrc fail on this input. qevts together with the Gröbner
simplifier yields after 0.06 s the quantifier-free equivalent a �= 0∨x0 �= 0∨ y0 �= 0
containing non-degeneracy conditions for the triangles.
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Fig. 1. The angle at circumference is half the angle at center (Example 4).

The generic variants of qevts and qerrc produce “true” as a quantifier-free
equivalent wrt. the background theory {y �= 0}. This computation takes 0.02 s
with qevts and 2 s with qerrc.

6.3 The Enneper Surface

The Enneper surface is defined parametrically by

x = 3u + 3uv2 − u3 y = 3v + 3u2v − v3 z = 3u2 − 3v2,

cf. [8]; in other words as the image of the function

f : C
2 −→ C

3 with f(u, v) = (3u + 3uv2 − u3, 3v + 3u2v − v3, 3u2 − 3v2).

The smallest variety V containing the Enneper surface is given by the polynomial

p(x, y, z) = 19683x6 − 59049x4y2 + 10935x4z3 + 118098x4z2 − 59049x4z +
59049x2y4 + 56862x2y2z3 + 118098x2y2z + 1296x2z6 +
34992x2z5 + 174960x2z4 − 314928x2z3 − 19683y6 + 10935y4z3 −
118098y4z2 − 59049y4z − 1296y2z6 + 34992y2z5 − 174960y2z4 −
314928y2z3 − 64z9 + 10368z7 − 419904z5.

Using Gröbner bases techniques it is easy to proof that over the complex numbers
the image of f is identical to the complete complex variety V . The real Enneper
surface is given by the restriction f �R

3

R2 . The question is whether the real Enneper
surface is identical to the real variety of p.

This problem can be easily stated as a real quantifier elimination problem.
A first-order description of the real image of f is given by

ϕ ≡ ∃u∃v(x = 3u + 3uv2 − u3 ∧ y = 3v + 3u2v − v3 ∧ z = 3u2 − 3v2
)
.
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Using this formula the complete problem can be stated as

∀x∀y∀z(ϕ(x, y, z)⇔ p(x, y, z) = 0).

It turns out, that none of the quantifier elimination algorithms considered in
this paper can eliminate all the quantifiers of the above formula. Actually, none
of the implementations is able to find a quantifier-free equivalent to ϕ. In the
next paragraphs we will describe how to tackle the problem with the quantifier
elimination algorithms and the tools available in the redlog system.

In a first step we compute a quantifier-free equivalent to ϕ. With the im-
plementation of the virtual substitution method we can eliminate one of the
existential quantifiers of ϕ. The solutions of eliminating u or eliminating v are
up to a simple substitution identical. We start with the elimination of v and
obtain in 0.2 s the result

∃u(
v4 � 0 ∧ (v1 = 0 ∧ v2 = 0 ∧ v3 � 0 ∨ v1 = 0 ∧ v2 = 0 ∧ v3 � 0)

)

where

v1 := 108u6 + 324u4 − 9u2z2 − 54u2z + 243u2 − 27y2 − z3 − 18z2 − 81z,
v2 := 2u3 − uz + 3u− x,

v3 := 6u2y + yz + 9y,
v4 := 3u2 − z.

Applying the generalized cut to both constituents of the disjunction, we obtain
the formula:

∃u(
v4 � 0 ∧ v1 = 0 ∧ v2 = 0

)
.

redlog produces this formula by computing a disjunctive normal form. After
this simplification only the package qerrc can eliminate the remaining quanti-
fier, but the obtained elimination result ϕ′ is very large. Though it has only 81
atomic formulas a textual representation contains approximately 500 000 char-
acters.

However, we have found a quantifier-free description of the image of the
function describing the Enneper surface. One of the atomic formulas contained
in the result is the equation p = 0. But this fact does not imply any direction of
the equivalence we want to prove.

The obtained result is in fact to large, to eliminate the universal quantifiers
from

∀x∀y∀z(ϕ(x, y, z)⇔ p(x, y, z) = 0
)

with one of our quantifier elimination procedures. Actually, we are not able to
eliminate at least one universal quantifier. Thus we use redlog to simplify ϕ′.

An analysis of the formula yields that the result formula is a disjunction of
nine subformulas. Five of these nine are simply conjunctions of atomic formulas
and the remaining four subformulas are essentially conjunctive normal forms.

For a simplification of the formula we thus simplify each constituent of
the top-level disjunctions with the Gröbner simplifier for conjunctive normal
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forms. In a first step, we take the Gröbner simplifier without a factorization
of atomic formulas. In a second step we use the Gröbner simplifier with the
automatic factorization option twice for each constituent of the top-level dis-
junction. After these simplification we obtain a formula with 50 atomic formulas
and about 30000 characters. All these simplifications takes 434 s.

The automatic tableau method can simplify some of the resulting conjunctive
normal forms in about 1 s. After these simplifications we get a disjunction of
eight conjunctive normal forms. From these eight conjunctive normal forms are
six pure conjunctions of atomic formulas. The two other ones are conjunctions
containing atomic formulas and only one disjunction of two atomic formulas.
Using the equivalents

(α � 0 ∨ β = 0)←→ (α · β2 � 0) and (α = 0 ∨ β = 0)←→ (α · β = 0)

we can simplify the formula to a disjunctive normal form ψ with constituents ψi.
Let Θi be the set of atomic formulas of ψi. Using the Gröbner simplifier we

can simplify p = 0 wrt. the theory Θi to “true.” This means that ψi −→ p = 0
and hence ψ −→ p = 0.

Using a tool of redlog, which counts the frequencies of all included atomic
formulas we analyze our result. The most frequently occurring atomic formulas
in ψ are

x = 0, y = 0, z − 3 �= 0, and z �= 0

each of them with more than three occurrences.
This observation suggests, that we should study a special case of the impli-

cation. For arbitrary formulas Ψ , Γ and formulas α1, . . . , αn with α1 ∧ · · · ∧ αn

contradictive the following equivalence holds:

(Ψ ⇒ Γ )←→ (α1 ∧ · · · ∧ αn) ∨ (Ψ ⇒ Γ )
←→ (¬α1 ∧ Ψ)⇒ Γ ) ∧ . . . ∧ (¬αn ∧ Ψ)⇒ Γ )
←→ (¬α1 ⇒ (Ψ ⇒ Γ ) ∧ . . . ∧ (¬αn ⇒ (Ψ ⇒ Γ )).

Using x �= 0, y �= 0, z �= 0, z �= 3, and (x = 0 ∨ y = 0 ∨ z = 0 ∨ z = 3) for
the αi we can split our implication in a conjunction of five implications. Four of
them include simple equations for one of the variables.

For proving the cases including an equation we substitute the values 0 and 3
for the respective variable in the formula p = 0⇒ ψ and then we eliminate the
universal closure of the substitution result. The timings for this elimination are
summarized in Table 1. The elimination result is in all cases “true.”

After we have checked the special cases, we can exclude these cases by simpli-
fying the formula ψ with respect to the theory {x �= 0, y �= 0, z �= 0, z �= 3}. This
yields a disjunction of two conjunctions. One of the remaining constituents is
contradictive as shown by the elimination of the existential closure with qevts
in 0.8 s. Neither qepcad nor qerrc are able to prove this fact. The remaining
constituent is a conjunction β1 ∧ · · · ∧ β4 of atomic formulas, where β1 is the
equation p = 0. Instead of proving the complete implication, which is not pos-
sible with our quantifier elimination procedures, we prove p = 0 ⇒ βi for each
atomic formula βi in the conjunction. The first implication holds trivially.
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Table 1. Elimination times for the special cases.

x = 0 y = 0 z = 0 z = 3
qevts failed 0.7 s 0.1 s failed
qepcad 1.0 s 23.0 s 1.0 s 1.0 s

While trying to eliminate one of the quantifiers redlog applies a heuristic
to decrease the degree of the variables x and y. Namely, it replaces each oc-
currence of x2, and y2 by x and y respectively, adding the additional premise
x > 0 ∧ y > 0. Finally the quantifier elimination fails. However, after the degree
reduction qepcad is able to eliminate all universal quantifier. For the elimi-
nation it is necessary to give the quantifiers in the order ∀z∀y∀x. Altogether
the three eliminations take 34 s. All results are “true” and thus we have finally
proven the equivalence.

7 Conclusions

After approximately 50 years of development, quantifier algorithms can nowaday
be used to solve geometrical problems. Even if a first approach fails, the several
quantifier elimination methods can be applied in interaction with the user to
appropriate subproblems, finally solving the problem. Our results show, that
among the three considered algorithms there is no best algorithm, solving all
problems. Furthermore they show that not only quantifier elimination algorithms
are necessary but even powerful simplification algorithms and a wide spectrum
of tools for analyzing and decomposing formulas. Important for the user is a
common interface to all algorithms, like redlog provides one.
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Abstract. Automated discovering and proving for geometric inequali-
ties have been considered a difficult topic in the area of automated rea-
soning for many years. Some well-known algorithms are complete theo-
retically but inefficient in practice, and cannot verify non-trivial propo-
sitions in batches. In this paper, we present an efficient algorithm to
discover and prove a class of inequality-type theorems automatically by
combining discriminant sequence for polynomials with Wu’s elimination
and a partial cylindrical algebraic decomposition. Also this algorithm is
applied to the classification of the real physical solutions of geometric
constraint problems. Many geometric inequalities have been discovered
by our program, DISCOVERER, which implements the algorithm in
Maple.

1 Introduction

In the last 20 years, the efficiency of computer algorithms for automated rea-
soning in both algebraic and logic approaches has greatly increased. One has
reason to believe that computer will play a much more important role in reason-
ing sciences in the coming century. People will be able to prove theorems class
by class instead of one by one. Since Tarski’s well-known work [21], A Decision
Method for Elementary Algebra and Geometry, published in the early 1950’s,
the algebraic approaches have made remarkable progress in automated theorem
proving. Tarski’s decision algorithm, which could not be used to verify any non-
trivial algebraic or geometric propositions in practice because of its very high
computational complexity, has only got theoretical significance. Some substan-
tial progress was made by Seidenberg [20], Collins [12] and others afterwards,
but it was still far away from mechanically proving non-trivial theorems batch
by batch, and even class by class. The situation did not change until Wu [25,26]
proposed in 1978 a new decision procedure for proving geometry theorems of
“equality type,” i.e. the hypotheses and conclusions of the statements consist
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of polynomial equations only. This is a very efficient method for mechanically
proving elementary geometry theorems (of equality type). Chou [8] has success-
fully implemented Wu’s method for 512 examples which include almost all the
well-known or historically interesting theorems in elementary geometry, and it
was reported that for most of the examples the CPU time spent was only few
seconds each, or less than 1 second!
The success of Wu’s method has inspired in the world the advances of the al-

gebraic approach [18,22,23] to automated theorem proving. In the past 20 years,
some efficient provers have been developed based on different principles such
as Gröbner Bases [5,6] and Parallel Numerical Method [32]. Especially, Zhang
and his colleagues [11,29] gave algorithms and programs for automatically pro-
ducing readable proofs of geometry theorems. The achievement has made the
studies in automated proving enter a new stage that the proofs created by ma-
chines can compare with those by human being, while the decision problem was
playing a leading role before. It has also important applications to mathematics
mechanization and computer aided instruction (CAI).
Those methods mentioned above are mainly valid to equality-type theorem

proving. As for automated inequality discovering and proving, the progress has
been slow for many years. Chou and others [9,10] made helpful approaches in
this aspect by combining Wu’s method with CAD (Cylindrical Algebraic De-
composition) algorithm or others. Recently, a so-called “dimension-decreasing”
algorithm has been introduced by Yang [27]. Based on this algorithm, a pro-
gram called “BOTTEMA” was implemented on a PC. More than 1000 algebraic
and geometric inequalities including hundreds open problems have been verified
in this way. The total CPU time spent for proving 120 basic inequalities from
Bottema’s monograph “Geometric Inequalities,” on a Pentium/200, was 20-odd
seconds only. To our knowledge, this is the first practical prover which can verify
non-trivial inequality-type propositions in batches. As one of the applications,
this makes it practical to solve a global-optimization problem by means of veri-
fying finitely many inequalities.
The reason for automated inequality discovering and proving to be a difficult

topic is that the concerning algorithms depend fundamentally upon real algebra
and real geometry, and some well-known algorithms are complete theoretically
but inefficient in practice. In [30,34,31], Yang and others introduced a powerful
tool, complete discrimination system (CDS) of polynomials, for inequality rea-
soning. By means of CDS, together with Wu’s elimination and a partial CAD
algorithm, we present an efficient algorithm to discover and prove a class of
inequality-type theorems automatically. A program called “DISCOVERER” was
implemented in Maple that is able to discover new inequalities automatically,
without requiring us to put forward any conjectures beforehand. For example, by
means of this program, we have re-discovered 37 inequalities in the first chapter
of the famous monograph [19], “Recent Advances in Geometric Inequalities,”
and found three mistakes there.
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2 The Problem

In general, the problem we study here is:
Give the necessary and sufficient condition which the parameters u must

satisfy for the following system TS to have exactly n distinct real solution(s) (or
simply, to have real solution(s)):

TS :






f1(u, x1) = 0,
f2(u, x1, x2) = 0,
· · · · · ·
fs(u, x1, x2, . . . , xs) = 0,
g1(u,X) ≥ 0, g2(u,X) ≥ 0, . . . , gt(u,X) ≥ 0

(1)

where u = (u1, u2, . . . , ud), X = (x1, x2, . . . , xs),

fi ∈ Z(u)[x1, . . . , xi], 1 ≤ i ≤ s,

gj ∈ Z(u)[x1, . . . , xs], 1 ≤ j ≤ t,

and {f1, f2, . . . , fs} is a “normal ascending chain” [33,34] which is “simpli-
cial” [33,34] w.r.t. each gj (1 ≤ j ≤ t) (also see Section 3 of the present paper
for the definitions of these two concepts). Some of the inequalities in (1) may be
strict ones.

Before we go further, we illustrate this class of problems by an example:
Give the necessary and sufficient condition for the existence of a triangle with

elements s, r, R, where s, r, R are the half perimeter, inradius and circumradius,
respectively.
Let a, b, c be the lengths of sides and, without loss of generality, let s = 1; we

have

PS′ :






p1 = a+ b+ c− 2 = 0,
p2 = r2 − (1 − a)(1− b)(1− c) = 0,
p3 = 4 rR− abc = 0,
0 < a < 1, 0 < b < 1, 0 < c < 1, 0 < r, 0 < R.

It is easy to see that PS′ is equivalent to the following system:

TS′ :






f1(r,R, a) = a3 − 2 a2 + (r2 + 4 rR+ 1)a− 4 rR = 0,
f2(r,R, a, b) = ab2 + a(a− 2)b+ 4 rR = 0,
f3(r,R, a, b, c) = a+ b+ c− 2 = 0,
0 < a < 1, 0 < b < 1, 0 < c < 1, 0 < r, 0 < R.

where a, b, c are the variables and r,R the parameters. What we need to do
is to find the condition satisfied by r,R, under which TS′ has real solution(s).
Obviously, this is a problem of the class defined above.
By the algorithm presented in this paper, we can easily find the condition

s4 + 2 r2s2 − 4R2s2 − 20 rRs2 + 12 r3R+ 48 r2R2 + r4 + 64 rR3 ≤ 0,
which is called the “Fundamental Inequality” [19] for triangles.
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3 Concepts and Notations

In this section, we review some concepts and notations from [33,34] and [30,7,17].
Given a polynomial g and a triangular set {f1, f2, . . . , fs}, let

rs = g, rs−i = resultant(rs−i+1, fs−i+1, xs−i+1), i = 1, 2, . . . , s,
qs = g, qs−i = prem(qs−i+1, fs−i+1, xs−i+1), i = 1, 2, . . . , s;

and res(g, fs, . . . , f1) and prem(g, fs, . . . , f1) denote r0 and q0, respectively.

Definition 3.1 (Normal Ascending Chain [33,34]). Given a triangular set
{f1, f2, . . . , fs}, by Ii (i = 1, 2, . . . , s) denote the leading coefficient of fi in xi.
The triangular set {f1, f2, . . . , fs} is called a normal ascending chain if

I1 �= 0, res(Ii, fi−1, . . . , f1) �= 0, i = 2, . . . , s.

Definition 3.2 (Simplicial [33,34]). A normal ascending chain {f1, f2, . . . , fs}
is simplicial with respect to a polynomial g if either prem(g, fs, . . . , f1) = 0 or
res(g, fs, . . . , f1) �= 0.
Definition 3.3 (Discrimination Matrix [30]). Given a polynomial with general
symbolic coefficients

f(x) = a0x
n + a1x

n−1 + · · ·+ an,

the following 2n× 2n matrix in terms of the coefficients




a0 a1 a2 · · · an

0 na0 (n− 1)a1 · · · an−1

a0 a1 · · · an−1 an

0 na0 · · · 2an−2 an−1

· · · · · ·
· · · · · ·
a0 a1 a2 · · · an

0 na0 (n− 1)a1 · · · an−1





is called the discrimination matrix of f(x), and denoted by Discr(f). By dk

or dk(f) denote the determinant of the submatrix of Discr(f), formed by the
first k rows and the first k columns for k = 1, 2, . . . , 2n.

Definition 3.4 (Discriminant Sequence [30]). Let D0 = 1 and Dk = d2k,
k = 1, . . . , n. We call the n+ 1-tuple

D0, D1, D2, . . . , Dn

the discriminant sequence of f(x), and denote it by DiscrList(f).
The last term Dn is also called the discriminant of f with respect to x, and

denoted by Discrim(f, x). It should be noted that the definition of Discrim(f, x)
here is little different from the others which are Dn/a0.
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Definition 3.5 (Sign List [30]). We call the list

[sign(A0), sign(A1), sign(A2), . . . , sign(An)]

the sign list of a given sequence A0, A1, A2, . . . , An, where

sign(x) =






1, x > 0,
0, x = 0,
−1, x < 0.

Definition 3.6 (Revised Sign List [30]). Given a sign list [s1, s2, . . . , sn], we
construct a new list

[t1, t2, . . . , tn]

(which is called the revised sign list) as follows:

– If [si, si+1, . . . , si+j ] is a section of the given list, where

si �= 0, si+1 = · · · = si+j−1 = 0, si+j �= 0,

then, we replace the subsection

[si+1, . . . , si+j−1]

with the first j − 1 terms of 1

[−si,−si, si, si,−si,−si, si, si, . . . ].

– Otherwise, let tk = sk, i.e. no change for other terms.

Example 3.1. The revision of the sign-list

[1,−1, 0, 0, 0, 0, 0, 1, 0, 0,−1,−1, 1, 0, 0, 0]

is [1,−1, 1, 1,−1,−1, 1, 1,−1,−1,−1,−1, 1, 0, 0, 0].
Theorem 3.1 ([30]). Given a polynomial f(x) with real coefficients

f(x) = a0x
n + a1x

n−1 + · · ·+ an,

if the number of the sign changes of the revised sign list of

D0, D1(f), D2(f), . . . , Dn(f)

is ν, then the number of the pairs of distinct conjugate imaginary roots of f(x)
equals ν. Furthermore, if the number of non-vanishing members of the revised
sign list is l, then the number of the distinct real roots of f(x) equals l− 1− 2ν.
1 that is, let ti+r = (−1)[

r+1
2 ] · si, r = 1, 2, . . . , j − 1.
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Definition 3.7 (Generalized Discrimination Matrix). Given two poly-
nomials g(x) and f(x) where

f(x) = a0x
n + a1x

n−1 + · · ·+ an,

let 2

r(x) = rem(f ′g, f, x) = b0x
n−1 + b1x

n−2 + · · ·+ bn−1.

The following 2n× 2n matrix




a0 a1 a2 · · · an

0 b0 b1 · · · bn−1

a0 a1 · · · an−1 an

0 b0 · · · bn−2 bn−1

· · · · · ·
· · · · · ·
a0 a1 a2 · · · an

0 b0 b1 · · · bn−1





is called the generalized discrimination matrix of f(x) with respect to g(x), and
denoted by Discr(f, g).

Definition 3.8 (Generalized Discriminant Sequence [7,17]). Given two polyno-
mials f(x) and g(x), let the notations be as above, and D0 = 1. Denote by

D1(f, g), D2(f, g), . . . , Dn(f, g)

the even order principal minors of Discr(f, g). We call

D0, D1(f, g), D2(f, g), . . . , Dn(f, g)

the generalized discriminant sequence of f(x) with respect to g(x), and denote
it by GDL(f, g). Clearly, GDL(f, 1) = DiscrList(f).

Theorem 3.2 ([7,17]). Given two polynomials f(x) and g(x), if the number of
the sign changes of the revised sign list of GDL(f, g) is ν, and the number of
non-vanishing members of the revised sign list is l, then

l − 1− 2ν = c(f, g+)− c(f, g−),

where 3

c(f, g+) = card({x ∈ R|f(x) = 0, g(x) > 0}),
c(f, g−) = card({x ∈ R|f(x) = 0, g(x) < 0}).

2 By rem(a(x), b(x), x) denote the remainder of a(x) divided by b(x).
3 By card(·) represent the cardinal number of a set.
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4 A Theoretical Algorithm

In this section, we give an algorithm which has theoretical significance. The
practical algorithm is given in the next section.
Let

ps = {pi|1 ≤ j ≤ n}
be a nonempty, finite set of polynomials. We define

mset(ps) = {1} ∪ {pi1pi2 · · · pik
|1 ≤ k ≤ n, 1 ≤ i1 < i2 < · · · < ik ≤ n}.

For example, if ps = {p1, p2, p3}, then

mset(ps) = {1, p1, p2, p3, p1p2, p1p3, p2p3, p1p2p3}.

Given system TS as (1), we define

Ps+1 = {g1, g2, . . . , gt};
Ui =

⋃

q∈mset(Pi+1)

GDL(fi, q),

Pi = {h(u, x1, . . . , xi−1)|h ∈ Ui}, for i = s, s− 1, . . . , 2;
P1(g1, g2, . . . , gt) = {h(u)|h ∈ U1},

where Ui means the set consisting of all the polynomials in each GDL(fi, q) with q
belonging to mset(Pi+1). Analogously, we can define P1(g1, . . . , gj) (1 ≤ j ≤ t).
Then we have

Theorem 4.1. The necessary and sufficient condition for system TS to have a
given number of distinct real solution(s) can be expressed in terms of the signs
of the polynomials in P1(g1, g2, . . . , gt).

Proof. First of all, we regard fs and every gi as polynomials in xs. By Theo-
rems 3.1 and 3.2 we know that under constraints gi ≥ 0, 1 ≤ i ≤ t, the number
of distinct real solutions of fs = 0 can be determined by the signs of polyno-
mials in Ps; let hj (1 ≤ j ≤ l) be the polynomials in Ps; we regard every hj

and fs−1 as polynomials in xs−1, repeat the same argument as what we did
for fs and gi’s, then we get that, under constraints gi ≥ 0, 1 ≤ i ≤ t, the number
of distinct real solutions of fs = 0, fs−1 = 0 can be determined by the signs of
polynomials in Ps−1; do the same argument until P1(g1, g2, . . . , gt) is employed.
Because the conditions obtained in each step are necessary and sufficient, the
theorem holds.
Now, theoretically speaking, we can get the necessary and sufficient condition

for system TS to have (exactly n distinct) real solution(s) as follows:

Step 1 Compute P1(g1, g2, . . . , gt), the set of polynomials in parameters, which
is defined above for TS.



Automated Discovering and Proving for Geometric Inequalities 37

Step 2 By the algorithm of PCAD [2,3], we can obtain P1-invariant cad D of
parameter spaceRd and its cylindrical algebraic sample (cas) S [24]. Roughly
speaking, D is a finite set of cells that each polynomial of P1 keeps its sign
in each cell; and S is a finit set of points obtained by taking from each cell
one point at least, which is called the sample point of the cell.

Step 3 For each cell c in D and its sample point sc ∈ S, substitute sc into
TS (denote it by TS(sc)). Compute the number of distinct real solutions of
system TS(sc), in which polynomials all have constant coefficients now. At
the same time, compute the signs of polynomials in P1(g1, g2, . . . , gt) on this
cell by substituting sc into them respectively. Record the signs of polynomials
in P1(g1, g2, . . . , gt) when the number of distinct real solutions of system
TS(sc) equals to the required number n (or when the number > 0, if we
are asked to find the condition for TS to have real solution). Obviously, the
signs of polynomials in P1(g1, g2, . . . , gt) on cell c form a first order formula,
denoted by Φc.

Step 4 If, in step 3, all we have recorded are Φc1 , . . . , Φck
, then Φ = Φc1∨· · ·∨Φck

is what we want.

5 The Practical Algorithm

The algorithm given in Section 4 is not practical in many cases since
P1(g1, g2, . . . , gt) usually has too many polynomials. Because not all those poly-
nomials are necessary for expressing the condition we want, so we have to give an
efficient algorithm to select those necessary polynomials from P1(g1, g2, . . . , gt).

Theorem 5.1. Let system TS be given as above. If PolySet is a finite set of
polynomials in parameters u, e.g.

PolySet = {qi(u) ∈ Z[u1, . . . , ud]|1 ≤ i ≤ k},

then, by the algorithm of PCAD, we can obtain a PolySet-invariant cad D of
parameter space Rd and its cas. If PolySet satisfies that

1. the number of distinct real solutions of system TS is invariant in the same
cell and

2. the number of distinct real solutions of system TS in two distinct cells C1, C2

is the same if PolySet has the same sign in C1, C2,

then the necessary and sufficient conditions for system TS to have exactly n
distinct real solution(s) can be expressed by the signs of the polynomials in
PolySet. If PolySet satisfies (1) only, then some necessary conditions for system
TS to have exactly n distinct real solution(s) can be expressed by the signs of
the polynomials in PolySet.

Proof. We replace parameters u in TS with each sample point respectively. Be-
cause D is PolySet-invariant and PolySet satisfies (1), we can record the signs
of polynomials in PolySet and the number of distinct real solutions of TS on
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each cell respectively. Choose all those cells on which TS has n distinct real
solution(s). The signs of polynomials in PolySet on those cells form a first order
formula, e.g.

Φ = Φ1 ∨ Φ2 ∨ · · · ∨ Φl.

where each Φi represents the signs of polynomials in PolySet on a certain cell
on which TS has n distinct real solution(s). We will say that Φ is the condition
we want.
Given a parameter a = (a1, . . . , ad), which must fall into a certain cell, if

TS(a) has n distinct real solution(s), then a must belong to a cell on which TS
has n distinct real solution(s), i.e. a must satisfy a certain formula Φi; on the
contrary, if a satisfies a certain formula Φi, then, because TS has n distinct real
solution(s) on the cell represented by Φi and PolySet satisfies (2), we thus know
that TS must have n distinct real solution(s) on the cell which a belongs to.
Thus, the theorem holds.

Given system TS. For every fi, let

R1 = Discrim(f1, x1),
Ri = res(Discrim(fi, xi), fi−1, fi−2, . . . , f1), i ≥ 2,

where the definition of res( · · · · · · ) can be found at the beginning of Section 3.
For every gj , let

Rgj = res(gj , fs, fs−1, fs−2, . . . , f1).

We define
BPs = {Ri|1 ≤ i ≤ s}

⋃
{Rgj|1 ≤ j ≤ t}.

Clearly, BPs ⊆ P1(g1, g2, . . . , gt).

Theorem 5.2. Given system TS, BPs is defined as above. If we consider only
those cells which are homeomorphic to Rd and do not consider those cells which
are homeomorphic to Rk (k < d) when use PCAD, then BPs satisfies (1) in
theorem 5.1, so the necessary conditions (if we omit the parameters on those cells
homeomorphic to Rk (k < d)) for system TS to have n distinct real solution(s)
can be expressed by the signs of the polynomials in BPs.

Proof. By PCAD, we can get a BPs-invariant cad of Rd and its cas. Because
we consider only those cells which are homeomorphic to Rd, given a cell C, the
signs of each Ri and Rgj on C are invariant and do not equal to 0.
First of all, by the definition of R1, the sign of R1 on C is invariant means

that the number of real solutions of f1(u, x1) is invariant on C; then we re-
gard f2(u, x1, x2) as a polynomial in x2, because on C,

f1(u, x1) = 0, R2 = res(Discrim(f2, x2), f1, x1) �= 0,

thus Discrim(f2, x2) �= 0 on C, i.e. if we replace x1 in f2 with the roots of f1,
the number of real solutions of f2 is invariant. That is to say, the signs of R1

and R2 are invariant on C means the number of real solutions of f1 = 0, f2 = 0
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is invariant on C; now, it’s easy to see that the signs of R1, . . . , Rs are invariant
on C means the number of real solutions of f1 = 0, . . . , fs = 0 is invariant on C.
Secondly, by the definition of Rgj, we know that Rgj �= 0 means, on C, if we

replace x1, . . . , xs in gj with the roots of f1 = 0, . . . , fs = 0, then the sign of gj

is invariant. That completes the proof.

By theorem 5.2, we can start our algorithm from BPs as follows:

Step 1 Let PolySet = BPs, i = 1.
Step 2 By the algorithm of PCAD [2,3], compute a PolySet-invariant cad D

of the parameter space Rd and its cylindrical algebraic sample (cas) S [24].
In this step, we consider only those cells homeomorphic to Rd and do not
consider those homeomorphic to Rk (k < d), i.e., all those cells in D are
homeomorphic to Rd and all sample points in S are taken from cells in D.

Step 3 For each cell c in D and its sample point sc ∈ S, substitute sc into
TS (denote it by TS(sc)). Compute the number of distinct real solutions of
system TS(sc), in which polynomials all have constant coefficients now. At
the same time, compute the signs of polynomials in PolySet on this cell by
substituting sc into them respectively. Obviously, the signs of polynomials
in PolySet on cell c form a first order formula, denoted by Φc. When all the
TS(sc)’s are computed, let

set1 = {Φc| TS has n distinct real solution(s) on c},
set0 = {Φc| TS has not n distinct real solution(s) on c}.

Step 4 Decide whether all the recorded Φc’s can form a necessary and sufficient
condition or not by verifying whether set1 ∩ set0 is empty or not (because
of Theorem 5.1 and Theorem 5.2). If set1 ∩ set0 = Ø, go to Step 5; If
set1 ∩ set0 �= Ø, let

PolySet = PolySet ∪ P1(g1, . . . , gi), i = i+ 1,

and go back to Step 2.
Step 5 If set1 = {Φc1 , . . . , Φcm}, then Φ = Φc1 ∨ · · · ∨ Φcm is what we want.

Remark. In order to make our algorithm practical, we do not consider the
“boundaries” when use PCAD. So, the condition obtained by this algorithm is
a necessary and sufficient one if we omit the parameters on the “boundaries.” In
another word, all the conditions obtained by our program DISCOVERER, which
implements this algorithm, should be understood as follows: if the strict inequal-
ities hold, the conditions hold; if equalities hold, more discussion is needed.

Now, we consider following problem:
Give the necessary and sufficient condition which the parameters u must

satisfy for the following system PS to have (exactly n distinct) real solution(s)

PS :
{
h1(u,X) = 0, h2(u,X) = 0, . . . , hs(u,X) = 0
g1(u,X) ≥ 0, g2(u,X) ≥ 0, . . . , gt(u,X) ≥ 0 (2)
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where u means u1, u2, . . . , ud, treated as parameters; X means x1, x2, . . ., xs,
treated as variables. That is to say,

hi, gj ∈ Z(u1, . . . , ud)[x1, . . . , xs], 1 ≤ i ≤ s, 1 ≤ j ≤ t.

First of all, by Wu’s elimination [25,26], we can reduce the system
h1(u,X) = 0, h2(u,X) = 0, . . . , hs(u,X) = 0 to some “triangular sets.” Then,
if necessary, by WR algorithm [33,34], make these triangular sets into normal
ascending chains in which every chain is simplicial w.r.t. each gj (1 ≤ j ≤ t). So,
under some nondegenerate conditions, we can reduce PS to some TS’s. These
nondegenerate conditions, however, do not bring any new limitations on our al-
gorithm because we do not consider “boundaries” when use PCAD and all those
parameters which make degenerate conditions true are contained in “bound-
aries.” Another situation we do have to handle is some TS’s reduced from PS
may have real solutions with dimension greater than 0. In our present algorithm
and program, we do not deal with this situation and if it occurs, DISCOVERER
outputs a message and does nothing else.

6 Examples

Many problems with various background can be formulated into system PS and
can be solved by DISCOVERER automatically.
The calling sequence of DISCOVERER for system PS is:

tofind ([h1, . . . , hs], [g1, . . . , gt], [x1, . . . , xs, u1, . . . , ud], α);

where α has following three kind of choices:

– a non-negative integer ν which means the condition for PS to have ν distinct
real solution(s) exactly;

– a range ν..µ (ν, µ are non-negative integers, ν < µ) which means the condi-
tion for PS to have ν or ν + 1 or . . . or µ distinct real solutions;

– a range ν..n (ν is a non-negative integer, n a name) which means the condi-
tion for PS to have ν or more than ν distinct real solutions.

Example 6.1. Which triangles can occur as sections of a regular tetrahedron
by planes which separate one vertex from the other three?
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This example appeared as an unsolved problem in the American Mathemat-
ical Monthly (Oct. 1994) [15]. In fact, it is a special case of the well-known
Perspective-three-Point (P3P) problem (see the following Example 6.2).
If we let 1, a, b (assume b ≥ a ≥ 1) be the lengths of three sides of the

triangle, and x, y, z the distances from the vertex to the three vertexes of the
triangle, respectively (see Figure 1), then, what we need is to find the necessary
and sufficient condition that a, b should satisfy for the following system to have
real solution(s)






h1 = x2 + y2 − xy − 1 = 0,
h2 = y2 + z2 − yz − a2 = 0,
h3 = z2 + x2 − zx− b2 = 0,
x > 0, y > 0, z > 0, a− 1 ≥ 0, b− a ≥ 0.

With our program DISCOVERER, we need only to type in

tofind ([h1, h2, h3], [x, y, z, a− 1, b− a], [x, y, z, a, b], 1..n);

DISCOVERER runs 26 seconds on a K6/233 PC with MAPLE5.3, and outputs

FINAL RESULT:

The system has required real solution(s) IF AND ONLY IF

[R1 ≥ 0, R2 ≥ 0] or [R1 ≥ 0, R2 ≤ 0, R3 ≥ 0]
where

R1 = a2 + a+ 1− b2

R2 = a2 − 1 + b− b2

R3 = 1− 8
3
a2 − 8

3
b2 +

16
9

a8 − 68
27

b6a2 +
241
81

b4a4 − 68
27

b2a6

− 68
27

b4a2 − 68
27

b2a4 − 2
9
b6 +

16
9

b8 − 2
9
a6 +

46
9

b2a2

+
16
9

b4 +
16
9

a4 +
46
9

b2a8 +
46
9

b8a2 − 68
27

b6a4 − 68
27

b4a6

+
16
9

b4a8 − 8
3
b10a2 +

16
9

b8a4 − 2
9
b6a6 − 8

3
b2a10 − 8

3
b10

+ b12 − 8
3
a10 + a12

The article [15] has given a sufficient condition that any triangle with two
angles> 60◦ is a possible section. It is easy to see that this condition is equivalent
to [R1 > 0, R2 > 0].

Example 6.2. Given the distance between every pair of 3 control points, and
given the angle to every pair of the control points from an additional point called
the centre of perspectivity (say P ), find the lengths of the segments joining P
and each of the control points. This problem originates from camera calibration
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and is called perspective-three-point (P3P) problem. The corresponding algebraic
equation system is called the P3P equation system.
So-called a solution classification of P3P equation system is to give explicit

conditions under which the system has none, one, two, . . ., real physical solutions,
respectively. This problem had been open for many years [16], until [28] appeared
recently.
This example is about a special case of P3P problem and was studied in

different way by Gao and Cheng [16]. Suppose the control points A,B,C form
an equilateral triangle and � CPA = � APB, give the solution classification. The
corresponding equation system is






h1 = y2 + z2 − 2yzp− 1 = 0,
h2 = z2 + x2 − 2zxq − 1 = 0,
h3 = x2 + y2 − 2zxq − 1 = 0,
x > 0, y > 0, z > 0, 1− p2 > 0, 1− q2 > 0, p+ 1− 2q2 ≥ 0.

where parameters p, q denote the cosines of the angles

� BPC, � CPA (= � APB),

and x, y, z denote the lengths of the segments PA,PB, PC, respectively.

By our program DISCOVERER, we need only type in

tofind ([h1, h2, h3], [x, y, z, 1− p2, 1− q2, p + 1− 2q2], [x, y, z, p, q], 0);
tofind ([h1, h2, h3], [x, y, z, 1− p2, 1− q2, p + 1− 2q2], [x, y, z, p, q], 1);
tofind ([h1, h2, h3], [x, y, z, 1− p2, 1− q2, p + 1− 2q2], [x, y, z, p, q], 2);
tofind ([h1, h2, h3], [x, y, z, 1− p2, 1− q2, p + 1− 2q2], [x, y, z, p, q], 3);
tofind ([h1, h2, h3], [x, y, z, 1− p2, 1− q2, p + 1− 2q2], [x, y, z, p, q], 4);
tofind ([h1, h2, h3], [x, y, z, 1− p2, 1− q2, p + 1− 2q2], [x, y, z, p, q], 5..n);

respectively. After 64 seconds, on a PII/266 PC with MAPLE5.4, we get the
solution classification except some boundaries:

The system has 0 real solution IF AND ONLY IF

[R1 > 0, R2 > 0, R3 < 0, R4 > 0]
or

[R1 < 0, R2 > 0, R3 < 0]

The system has 1 real solution IF AND ONLY IF

[R2 < 0, R3 < 0, R5 > 0]
or

[R2 < 0, R5 < 0]

The system has 2 real solutions IF AND ONLY IF

[R1 > 0, R2 > 0, R3 < 0, R4 < 0, R5 > 0]
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or
[R1 > 0, R2 > 0, R3 > 0, R4 > 0, R5 > 0]

or
[R1 > 0, R2 > 0, R4 < 0, R5 < 0]

The system has 3 real solutions IF AND ONLY IF

[R2 < 0, R3 > 0, R4 < 0, R5 > 0]

The system has 4 real solutions IF AND ONLY IF

[R1 > 0, R2 > 0, R3 > 0, R4 < 0, R5 < 0]

The system has 5..n real solutions IF AND ONLY IF

There are not 5..n real solutions in this branch

where
R1 = q,

R2 = 2p− 1,
R3 = 2q − 1,

R4 = 2p− 1− q2,

R5 = 2pq2 − 3q2 + 1.

Note that p + 1 − 2q2 ≥ 0, the given condition should hold in all cases. And if
you want to know the situation when parameters are on a boundary, say R2,
you need only to type in

tofind ([h1, h2, h3, R2], [x, y, z, 1− p2, 1− q2, p + 1− 2q2], [x, y, z, p, q], 0);
tofind ([h1, h2, h3, R2], [x, y, z, 1− p2, 1− q2, p + 1− 2q2], [x, y, z, p, q], 1);
tofind ([h1, h2, h3, R2], [x, y, z, 1− p2, 1− q2, p + 1− 2q2], [x, y, z, p, q], 2);
tofind ([h1, h2, h3, R2], [x, y, z, 1− p2, 1− q2, p + 1− 2q2], [x, y, z, p, q], 3);
tofind ([h1, h2, h3, R2], [x, y, z, 1− p2, 1− q2, p + 1− 2q2], [x, y, z, p, q], 4);
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In this way, we obtained the complete solution classification, as indicated in
Figure 2.

Example 6.3. Solving geometric constraints is the central topic in many cur-
rent work of developing intelligent Computer Aided Design systems and interac-
tive constraint-based graphic systems. The existing algorithms do not consider
whether the given system has real physical solution(s) or not. Our algorithm and
program can give the necessary and sufficient condition for the system to have
real physical solution(s). For example:
Give the necessary and sufficient condition for the existence of a triangle with

elements a, ha, R, where a, ha, R means the side-length, altitude, and circumra-
dius, respectively.
Clearly, we need to find the necessary and sufficient condition for the following

system to have real solution(s)





f1 = a2h2
a − 4s(s− a)(s− b)(s− c) = 0,

f2 = 2Rha − bc = 0,
f3 = 2s− a− b− c = 0,
a > 0, b > 0, c > 0, a+ b− c > 0, b+ c− a > 0,
c+ a− b > 0, R > 0, ha > 0.

We type in

tofind([f1, f2, f3], [a, b, c, a + b − c, b + c − a, c + a − b, R, ha], [s, b, c, a, R, ha], 1..n);

DISCOVERER runs 4.5 seconds on a PII/266 PC with MAPLE5.4, and outputs

FINAL RESULT:

The system has required real solution(s) IF AND ONLY IF

[R1 ≥ 0, R3 ≥ 0] or [R1 ≥ 0, R2 ≤ 0, R3 ≤ 0]
where

R1 = R− 1
2
a

R2 = Rha − 1
4
a2

R3 = − 1
2
h2

a +Rha − 1
8
a2

In [19], the condition they gave is R1 ≥ 0 ∧R3 ≥ 0. Now, we know they are
wrong and that is only a sufficient condition.

Our program, DISCOVERER, is very efficient for solving this kind of prob-
lems. By DISCOVERER, we have discovered or rediscovered about 70 such condi-
tions for the existence of a triangle, and found three
mistakes in [19].
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Abstract. The approach previously used to mechanise lemmas and Ke-
pler’s Law of Equal Areas from Newton’s Principia [13] is here used
to mechanically reproduce the famous Propositio Kepleriana or Kepler
Problem. This is one of the key results of the Principia in which New-
ton demonstrates that the centripetal force acting on a body moving in
an ellipse obeys an inverse square law. As with the previous work, the
mechanisation is carried out through a combination of techniques from
geometry theorem proving (GTP) and Nonstandard Analysis (NSA) us-
ing the theorem prover Isabelle. This work demonstrates the challenge
of reproducing mechanically Newton’s reasoning and how the combina-
tion of methods works together to reveal what we believe to be flaw in
Newton’s reasoning.

1 Introduction

The reasoning of Newton’s Philosophiæ Naturalis Principia Mathematica (the
Principia [14]), as it was originally published, is a mixture of geometric and al-
gebraic arguments together with Newton’s own proof techniques. These combine
to produce a complex mathematical reasoning that is used to explain the phys-
ical world. The demonstrations of Lemmas and Propositions in the Principia
are, in fact, proof sketches that require a lot of work on the part of the reader
for a detailed understanding. There are several reasons that make the Principia
a very difficult text to master. First of all, the proofs are very involved and one
requires an adequate knowledge of geometry to be able to understand many of
the steps made by Newton. Secondly, Newton’s exposition can be tedious and
difficult to grasp in places. Many mathematicians contemporary to Newton, de-
spite their grounding in ancient Greek geometry and familiarity with the style of
the exposition, had difficulties understanding Newton’s mathematical reasoning.
This gives an indication of the demands that a thorough study of the Principia
has on the modern reader.

As we mentioned in a previous paper, Newton’s geometry is also notable
for his use of limit or ultimate arguments in his proofs [13]. These are implicit
notions of differential calculus that are at the core of Newton’s treatment and
give Newton’s geometry an infinitesimal nature. Newton further adds motion to
his reasoning and enriches the geometry with various kinematics concepts that

X.-S. Gao, D. Wang, and L. Yang (Eds.): ADG’98, LNAI 1669, pp. 47–66, 1999.
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enable points to move towards points for example. Thus, Newton’s geometry
consists in studying the relations, such as ratios, between various parts of the
constructed diagrams as certain of its elements tend towards limiting positions
or become infinitely small.

In this paper, we build on the tools and techniques that we presented be-
fore [13]. In section 2, we review the geometric methods and concepts that we
have formalised in this work. We also give examples of theorems proved in Is-
abelle using these techniques. Section 3 is a brief introduction to the concepts
from NSA that we use; it also outlines the infinitesimal aspects of our geometry.
We then present in Section 4, as a case study, the proof of the Kepler Propo-
sition. This is a key proof of the Book 1 of the Principia and our work follows,
in its steps, the analysis made by Densmore [9]. This extended case study shows
our combination of techniques from geometry and NSA at work to provide a for-
mal proof of a major proposition. The challenge inherent to the mechanisation
of Newton’s reasoning– especially in an interactive environment such as Isabelle
where the user guides the proof– will become obvious as we highlight the steps
and difficulties encountered. Section 5 offers our comments and conclusions.

2 Geometry

We use methods that are based on geometric invariants [5,6] and high level
geometry lemmas about these invariants. A particular property is ideal as an
invariant if it ensures that the proofs generated are short. This enables some of
the proofs to be derived automatically using the powerful tactics of Isabelle’s
classical reasoner. Also, the methods should be powerful enough to prove many
properties without adding auxiliary points or lines. The other important aspect
is to achieve diagram independence for the proofs, that is, the same proof can
be applied to several diagrams.

2.1 The Signed Area Method

In this method, there are basic rules about geometric properties called signed
areas. These can be used to express various geometric concepts such as collinear-
ity (coll), parallelism (‖) and so on. Moreover, the basic rules can be combined
to prove more complex theorems which deal with frequently-used cases and help
simplify the search process.

We represent the line from point A to point B by A—B, its length by
len(A − B), and the signed area SdeltaABC of a triangle is the usual notion
of area with its sign depending on how the vertices are ordered. We follow the
usual approach of having SdeltaABC as positive if A—B—C is in anti-clockwise
direction and negative otherwise. Some of the rules and definitions used are:

a− b ‖ c− d ≡ (Sdelta a b c = Sdelta a b d)
coll a b c =⇒ len(a− b)× Sdelta p b c = len(b− c)× Sdelta p a b
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We can also introduce new points using the following property and define the
signed area of a quadrilateral Squad a b c d in terms of signed areas of triangles:

Sdelta a b c = Sdelta a b d+ Sdelta a d c + Sdelta d b c

Squad a b c d ≡ Sdelta a b c+ Sdelta a c d

We have proved a number of theorems about the sign of Squad a b c d that
depend on the ordering of the vertices, for example Squad a b c d = −Squad a d c b.

When dealing with geometry proofs, we often take for granted conditions
that need to be stated explicitly for machine proofs: for example, two points
making up a line should not coincide. The machine proofs are valid only if
these conditions are met. These are known as non-degenerate conditions and are
required in many cases to prevent the denominators of fractions from becoming
zero in the various algebraic statements.

2.2 The Full-Angle Method

A full-angle 〈u, v〉 is the angle from line u to line v measured anti-clockwise. We
define the equivalence relation of angular equality as follows:

x =a y ≡ ∃n ∈ IN. |x− y| = nπ

and can use it to express that two lines are perpendicular

a− b ⊥ c− d ≡ 〈a− b, c− d〉 =a
π

2

Other properties of full-angles concern their sign and how they can be split
or joined. The same rule therefore either introduces a new line or eliminates a
common one from the full angles depending on the direction in which it is used.

〈u, v〉 =a −〈v, u〉
〈u, v〉 =a 〈u, x〉+ 〈x, v〉

Full-angles are used instead of traditional angles because their use simplifies
many proofs by eliminating case-splits. Moreover, as we have already mentioned,
these methods are useful to us since they relate closely to the geometric prop-
erties used by Newton [13]. They preserve the intuitive nature of his geometry
and can easily be extended with infinitesimal notions, as we will see shortly.

2.3 A Simple Example: Euclid I.29

Euclid’s proposition 29 of Book I [10], can be easily proved using the full-angle
method. The proposition states that if A−B ‖ C−D and the transversal P −Q
intersects A−B and C −D then 〈A−B,P −Q〉 = 〈C −D,P −Q〉.
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Fig. 1. Euclid Proposition I.29

We prove this theorem easily by using the rules about full-angles given in
Section 2.2 and the fact the angle between two parallel lines is zero.
Proof:

A−B ‖ C −D =⇒ 〈A−B,C −D〉 =a 0
〈A−B,P −Q〉+ 〈P −Q,C −D〉 =a 0
〈A−B,P −Q〉 =a −〈P −Q,C −D〉
〈A−B,P −Q〉 =a 〈C −D,P −Q〉.

2.4 Extending the Geometric Theory

The main aim of the Principia is to investigate mathematically the motion of
bodies such as planets. Thus, we need to have definitions for geometric figures
such as the circle, the ellipse and their tangents. The ellipse is especially impor-
tant for this work since Kepler’s Problem is concerned with elliptical motion.
The circle can be viewed as a special case of the ellipse where the foci coincide.

ellipse f f r ≡ {p. |len(f − p)|+ |len(f − p)| = r}
circle x r ≡ ellipse xx ( · r)

arc len xa b ≡ |len(x− a)| × 〈a− x, x− b〉
e tangent (a− b) f f E ≡ (is ellipsef1 f2 E ∧ a ∈ E ∧

〈f1 − a, a− b〉 =a 〈b − a, a− f2〉)

We need to prove a number of properties relating to the ellipse such as the
one stating that all parallelograms described around a given ellipse are equal to
each other (Figure 2).

This relationship appears (in slightly different wording) as Lemma 12 of
the Principia where it is employed in the solution of Proposition 11, the famous
Propositio Kepleriana or Kepler problem. Newton refers us to the “writers on
the conics sections” for a proof of the lemma. This lemma is demonstrated in
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Fig. 2. Circumscribed Parallelograms

Book 7, Proposition 31 in the Conics of Apollonius of Perga [1]. Of course, unlike
Newton, we have to prove this result explicitly in Isabelle to make it available
to any other proof that might use it.

3 Infinitesimal Geometry

In this section, we give a brief overview of our geometry containing infinitesimals.
We first give formal definitions for the various types of numbers that exist and
which can be used to describe geometric quantities.

3.1 The Nonstandard Universe IR∗

Definition 1. In an ordered field extension IR∗ ⊇ IR, an element x ∈ IR∗ is
said to be an infinitesimal if |x| < r for all positive r ∈ IR; finite if |x| < r
for some r ∈ IR; infinite if |x| > r for all r ∈ IR.

The extended, richer number system IR∗ is known as the hyperreals. It has
been developed in Isabelle through purely definitional means using an ultrapower
construction. We will not give more details of this substantial construction in
the present paper so as to concentrate on the geometric aspects only.

Definition 2. x, y ∈ IR∗ are said to be infinitely close, x ≈ y if |x − y| is
infinitesimal.

This is an important equivalence relation that will enable us to reason about
infinitesimal quantities. For example, we can formalise the notion of two points
coinciding by saying that the distance between them is infinitely close to zero.
Two geometric quantities that become ultimately equal can also be modelled
using it. The relation and its properties are used to formalise ultimate situations
that might be considered degenerate by ordinary GTP methods [13].
Using the relation, we can also define the concept of two full-angles being in-
finitely close:

a1 ≈a a2 ≡ ∃n ∈ IN. |a1 − a2| ≈ nπ



52 Jacques D. Fleuriot and Lawrence C. Paulson

Various other new properties, such as ultimately similar and ultimately congruent
triangles, can then be defined as we showed previously [13]. These are then
used to prove various Lemmas that are needed to demonstrate the important
Propositions of the Principia.

4 An Overview of the Proof

This is Proposition 11 of Book 1 of the Principia. This Proposition is im-
portant for both mathematical and historical reasons as it lays the foundations
for Kepler’s first law of Gravitation. It provides the mathematical analysis that
could explain and confirm Kepler’s guess that planets travelled in ellipses round
the sun [15].

The proof of this proposition will be studied in detail as it gives a good
overview of the mixture of geometry, algebra and limit reasoning that is so char-
acteristic of Newton’s Principia. It also gives an idea of the depth and amount of
mathematical expertise involved in Newton’s proof. The proof that Newton de-
scribes, though relatively short on paper, becomes a major demonstration when
expanded and reproduced using Isabelle. The elegance of many of the construc-
tions, which could be glossed over, are revealed through the detailed analysis.

We give formal justifications of the steps made by Newton in ultimate situ-
ations through our formal and logical use of infinitesimals. Infinitesimal reason-
ing is notorious for leading to contradictions. However, nonstandard analysis is
generally believed to be consistent and hence ensure that our mechanisation is
rigorous. We will give the enunciation of the Proposition and the proof (sketch)
provided by Newton. We will then expand on the sketch and provide detailed
proofs of the steps that are made by Newton. This will require the use of the
rules from the geometric and NSA theories developed in Isabelle.

4.1 Proposition 11 and Newton’s Proof

Proposition 11 is in fact stated as a problem by Newton at the start of Section 3
of the Principia. This section deals with “the motion of bodies in eccentric conic
section”. Particular orbits and laws governing forces that are relevant to the
universe are investigated. The mathematical tools are developed for later use in
Book III of the Principia when natural phenomena of our world are investigated.
Our task consists in expressing Newton’s result as a goal which is then proved.
Figure 3 shows Newton’s original diagram used for this Proposition.

Proposition 11 If a body revolves in an ellipse; it is required to find the law of
the centripetal force tending to the focus of the ellipse
Newton’s Proof:
Let S be the focus of the ellipse. Draw SP cutting the diameter DK of the
ellipse in E, and the ordinate Qv in x; and complete the parallelogram QxPR.
It is evident that EP is equal to the greater semiaxis AC: for drawing HI from
the other focus H of the ellipse parallel to EC, because CS, CH are equal, ES,
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Fig. 3. Newton’s Original Diagram for Proposition 11

EI will be also equal; so that EP is the half-sum of PS, PI, that is (because
of the parallels HI, PR, and the equal angles IPR, HPZ), of PS, PH, which
taken together are equal to the whole axis 2AC. Draw QT perpendicular to SP ,
and putting L for the principal latus rectum of the ellipse (or for 2BC2

AC ), we shall
have

L ·QR : L · Pv = QR : Pv = PE : PC = AC : PC,
also, L · Pv : Gv · Pv = L : Gv, and, Gv · Pv : Qv2 = PC2 : CD2

By Corollary 2, Lemma 7, when the points P and Q coincide, Qv2 = Qx2, and
Qx2 or Qv2 : QT 2 = EP 2 : PF 2 = CA2 : PF 2, and (by
Lemma 12) = CD2 : CB2. Multiplying together corresponding terms of the four
proportions, and by simplifying, we shall have

L ·QR : QT 2 = AC · L · PC2 · CD2 : PC ·Gv · CD2 · CB2 = 2PC : Gv,

since AC · L = 2BC2. But the points Q and P coinciding, 2PC and Gv are
equal. And therefore the quantities L ·QR and QT 2, proportional to these, will
also be equal. Let those equals be multiplied by SP 2

QR , and L·SP 2 will become equal

to SP 2·QT 2

QR . And therefore (by Corollary 1 and 5, Proposition 6) the centripetal
force is inversely as L · SP 2, that is, inversely as the square of the distance SP .
Q.E.I.

Newton’s derivation concludes that the centripetal force, for a body moving
in an ellipse, is inversely proportional to the square of the distance.
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Our proof proceeds in several steps where we set up various relationships
that we will need for the conclusion. This involves proving Newton’s intermediate
results and storing them as intermediate theorems (we avoid calling them lemmas
so as not to confuse them with Newton’s own Lemmas).

4.2 A Geometric Representation for the Force

An investigation of the Proposition and Newton’s result indicates that our goal
is to prove that ∃ k ∈ IR. force ≈ k × 1

SP 2 (i.e. force ∝ 1
SP 2 ultimately). We now

demonstrate through a combination of geometric and infinitesimal procedures
how to prove the theorem.

Our combination of methods was previously used to prove Kepler’s Law of
Equal Areas [13]. This is an important result which states that a body moving
under the influence of a centripetal force describes equal areas in equal times.
Using this result we can now derive a completely geometric representation for
the force acting on the orbiting body.

Force

P

T

R

S

Q

Fig. 4. Diagram for Geometric Representation of Force

Consider Figure 4 in which a point P is moving along an arc of finite curvature
under the influence of a centripetal force acting towards S. Let Q be a point
infinitely close to P , that is, the length of the arc from P to Q is infinitesimal. QR,
parallel to SP , represents the displacement from the rectilinear motion (along
the tangent) due to the force acting on P . QT is the perpendicular dropped to
SP . From Newton’s Lemma 10, Corollary 3, we have that displacement “in
the very beginning of motion” is proportional to the force and the square of the
time, and hence (for some real proportionality constant k1) that

force ≈ k1 × len(Q− R)
Time2

(1)

Since the distance between P and Q is infinitesimal, the angle 〈P − S, S − Q〉
is infinitely small, and hence the area of the sector SPQ (Sarc S P Q) is infinitely
close to that of the triangle SPQ:

〈P − S, S− Q〉 ≈a 0 =⇒ Sarc S P Q ≈ Sdelta S P Q

=⇒ Sarc S P Q ≈ 1/2× len(Q− T)× len(S− P) (2)
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From Kepler’s Law of Equal Areas, we can replace Time by SarcSPQ [13] and,
hence, using (1) and (2), we have the following geometric representation for the
force (for some new proportionality constant k)

force ≈ k × len(Q− R)
len(Q− T)2 × len(S− P)2

(3)

This is a general result (Proposition 6 of the Principia) that applies to any
motion along an arc under the influence of a central force. We justify the use
of a circular arc for the general arc by the fact that it is possible to construct
a circle at the point P that represents the best approximation to the curvature
there. This circle, sometimes known as the osculating circle1, has the same first
and second derivative as the curve at the given point P . Thus, the osculating
circle has the same curvature and tangent at P as the general curve and an
infinitesimal arc will also be same. We refer the reader to Brackenridge for more
details on the technique [2,3].

With this result set up, to prove the Kepler Problem, we need to show that the
ratio involving the infinitesimal quantities QR and QT is equal or infinitely close
to some constant (finite) quantity. Thus, the proof of Proposition 11 involves, in
essence, eliminating the infinitesimals from relation (3) above. This relation is
transformed using the geometry of the ellipse to one involving only macroscopic
(i.e. non-infinitesimals) aspects of the orbit. We show next how the various GTP
and NSA techniques are applied to the analysis of an elliptical orbit to determine
the nature of the centripetal force.

4.3 Expanding Newton’s Proof

A detailed account of our mechanisation of Newton’s argument for Proposition 11
would take several pages since the proof sketch given by Newton is complex and
we would have to present a large number of derivations. We will highlight the
main results that were proved and, in some cases, details of the properties that
needed to be set up first. We will also mention the constraints that needed to
be satisfied within our framework before the various ratios that were proved
could be combined. Our mechanisation was broken down into several steps that
roughly followed from Newton’s original proof. The main results that are set up
are as follows (see Fig. 3):

– len(E− P) = len(A− C)
– len(A− C)/len(P− C) = L× len(Q− R)/L× len(P− v)
– L× len(P− v)/(len(G− v)× len(P− v)) = L/len(G− v)
– len(G− v)× len(P− v)/len(Q− v)2 = len(P− C)2/len(C− D)2

– len(Q− v)2/len(Q− T)2 ≈ len(C− D)2/len(C− B)2

Step 1: Proving len(E− P) = len(A− C)
1 from the Latin osculare meaning to kiss– the term was first used by Leibniz
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This result shows that the length of EP is independent of P and Newton’s
proof uses several properties of the ellipse. We will give a rather detailed overview
of this particular proof as it gives an idea of the amount of work involved in mech-
anising Newton’s geometric reasoning. Moreover, the reader can then compare
Newton’s proof style and prose with our own proof and see the GTP methods
we have formalised in action.

P

R

HS C

D

G K

Z
E

A

I

Fig. 5. Construction for Step 1 of Proposition 11

In Figure 5, the following holds

– C is the centre of the ellipse with S and H the foci
– P is a point of the curve
– RZ is the tangent at P
– the conjugate diameter D −K ‖ P − Z
– P − S intersects D −K at E
– H − I ‖ E − C and H − I intersects P − S at I

Since H− I ‖ E− C, the following theorem holds,

H− I ‖ E− C =⇒ Sdelta C E I = Sdelta C E H (4)

But the foci are collinear with and (by Apollonius III.45 [1]) equidistant from
the centre of the ellipse; so the following can be derived using the signed-area
method,

coll S C H =⇒ len(S− C)× Sdelta C E H = len(C− H)× Sdelta C S E

=⇒ Sdelta C E H = Sdelta C S E (5)

Also, points S, E and I are collinear and therefore combining with (4) and (5)
above, we verify Newton’s “ES,EI will also be equal”

coll S E I =⇒ len(S− E)× Sdelta C E I = len(E− I)× Sdelta C S E

=⇒ len(S− E) = len(E− I) (6)
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Next, the following derivations can be made, with the help of the last result
proving Newton’s “EP is the half-sum of PS, PI”

coll E I P =⇒ len(E− P) = len(E− I) + len(I− P)
=⇒ len(E− P) = len(S− E) + len(I− P)
=⇒ 2× len(E− P) = len(E− P) + len(S− E) + len(I− P)
=⇒ 2× len(E− P) = len(S− P) + len(I− P)

=⇒ len(E− P) =
len(S− P) + len(I− P)

2
(7)

Note the use of the following theorem in the derivation above

coll S E P =⇒ len(S− E) + len(E− P) = len(S− P)

Next, Newton argues that in fact (7) can be written as

len(E− P) =
len(S− P) + len(H− P)

2
(8)

So, a proof of len(I− P) = len(H− P) is needed to progress further. This will
follow if it can be shown that �PHI is an isosceles, that is

〈P− H, H− I〉 = 〈H − I, I− P〉 (9)

To prove (9), both H− I ‖ P− Z and H− I ‖ P− R are derived first using

H− I ‖ E− C ∧ E− C ‖ P− Z =⇒ H− I ‖ P− Z (10)
H− I ‖ P− Z ∧ coll P Z R =⇒ H− I ‖ P− R (11)

From (10), (11), and the proof of Euclid I.29 given in Section 2.3

H− I ‖ P− Z =⇒ 〈P − H, H− I〉 = 〈H− P, P− Z〉 (12)
H− I ‖ P− R =⇒ 〈H − I, I− P〉 = 〈R− P, P− I〉

=⇒ 〈H − I, I− P〉 = 〈R− P, P− S〉 (13)

From the definition of the tangent to an ellipse and the collinearity of P , I,
and S (also recall that full-angles are angles between lines rather than rays and
are measured anti-clockwise),

e tangent (P − Z) S H Ellipse =⇒ 〈H− P, P− Z〉 = 〈R − P, P− I〉
=⇒ 〈H− P, P− Z〉 = 〈R − P, P− S〉 (14)

From (12), (13) and (14), the following is deduced as required
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〈P− H, H− I〉 = 〈H − I, I− P〉

Thus, we have len(I− P) = len(H− P) (Euclid I.6 [10]), and hence (8) is proved,
that is, Newton’s assertion that “[EP is the half sum of] PS, PH”.

Next, it follows from the definition of an ellipse that the sum of len(S− P) and
len(P− H) is equal to the length of the major axis, that is,

P ∈ Ellipse =⇒ len(S− P) + len(P− H) = 2× len(A− C) (15)

From (15) and (8), we can finally derive the property that Newton states as
being evident: “EP is equal to the greater semiaxis AC”

len(E− P) = len(A− C) (16)

The first step has shown Newton’s geometric reasoning in action. For the
next steps, as the various ratios are derived, we will not always show the detailed
derivations of the geometric theorems. We will concentrate on the setting up of
the proportions and how everything is put together to get the final result. We will
state Newton’s Lemmas when they are used and theorems about infinitesimals
that we use.

Step 2: Showing L·QR
L·Pv = QR

Pv = PE
PC = AC

PC

P

R

HS C

D

G K

Z

Q

x

vE T
A

Fig. 6. Construction for Steps 2—4 of Proposition 11

In Figure 6, in addition to properties already mentioned, the following holds

– QT ⊥ SP
– QxPR is a parallelogram
– Q, x, and v are collinear
– Q is infinitely close to P
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It is easily proved that v− x ‖ C− E and so the following theorem follows

v− x ‖ C− E =⇒ 〈P − v, v− x〉 = 〈P− C, C− E〉 (17)

From (17) and the fact that �Pvx and �PCE share P as a common vertex,
it follows that they are similar. Also, since QxPR is a parallelogram, we have
len(Q− R) = len(P− x). Thus, the following derivations follow

SIM P V x P C E =⇒ len(P− E)
len(P− C)

=
len(P− x)
len(P− v)

=
len(Q− R)
len(P− v)

=
len(A− C)
len(P− C)

(18)

One of the substitution used in (18) follows from (16) proved in the previous
step. The equations above verify Newton’s ratios.

Step 3: Showing L·Pv
Gv·Pv = L

Gv

The proof of the ratio

L× len(P− v)
len(G− v)× len(P− v)

=
L

len(G− v)
(19)

is trivial and we will not expand on it. We only note that the constant L is
known as the latus rectum2 of the ellipse at A.

Step 4: Showing Gv·Pv
Qv2 = PC2

CD2

By Apollonius I.21 [1], if the lines DC and Qv are dropped ordinatewise to the
diameter PG, the squares on them DC2 and Qv2 will be to each other as the
areas contained by the straight lines cut off GC, CP , and Gv, vP on diameter
PG. Algebraically, we proved the following property of the ellipse,

len(D− C)2

len(Q− v)2
=

len(G− C)× len(C− P)
len(G− v)× len(P− v)

=
len(P− C)2

len(G− v)× len(P− v)

Rearranging the terms, we get the required ratio,

len(G− v)× len(P− v)
len(Q− v)2

=
len(P− C)2

len(D− C)2
(20)

2 The latus rectum is defined as L = 2× len(B− C)2/len(A− C)
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Step 5: Showing Qv2

QT 2 ≈ CD2

CB2 and intermediate ratios

P

R

D

G K

Z

Q

v
A

x

B

C
F

S H

E
T

Fig. 7. Construction for Step 5 of Proposition 11

In Figure 7, we have the additional property,

– PF ⊥ DK

Again, it can be easily proved that Qx ‖ EF. The following theorem then follows
from Euclid I.29 as given in Section 2.3

Q− x ‖ E− F =⇒ 〈Q − x, x− E〉 = 〈F− E, E− x〉
=⇒ 〈Q − x, x− T〉 = 〈F− E, E− P〉 (21)

Since 〈P− F, F− E, 〉 = 〈x − T, T− Q〉 = π/2 and (21), it follows that �PEF and
�QxT are similar. The next theorems (using (16) where needed) then hold and
verify Newton’s intermediate results for the current Step.

SIM P E F Q x T =⇒ len(Q− x)2

len(Q− T)2
=

len(P− E)2

len(P− F)2
=

len(C− A)2

len(P− F)2
(22)

Newton’s Lemma 12 (See Figure 2) is now needed for the next result. According
to the Lemma, the parallelogram circumscribed about DK and PG is equal to
the parallelogram circumscribed about the major and minor axes of the ellipse.
Thence, we have the following theorem

len(C− A)× len(C− B) = len(C− D)× len(P− F) (23)

Rearranging (23), we have len(C− A)/len(P− F) = len(C− D)/len(C− B) and
substituting in (22), leads to
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len(Q− x)2

len(Q− T)2
=

len(C− D)2

len(C− B)2
(24)

By Newton’s Lemma 7, Corollary 2, when the distance between Q and P
becomes infinitesimal as they coincide, we have the following result [13]:

len(Q− v)
len(Q− x)

≈ 1 (25)

Now, to reach the final result for this step, we need to substitute len(Q− v)
for len(Q− x) in (22). However, we cannot simply carry out the substitution
even though the quantities are infinitely close. Indeed, one has to be careful
when multiplying the quantities on both sides of the ≈ relation because they
might no longer be infinitely close after the multiplication. Consider, the non-
zero infinitesimal ε,

ε ≈ ε2 but ε× 1/ε �≈ ε2 × 1/ε

It is possible, however, to multiply two infinitely close quantities by any finite
quantity; the results are still infinitely close. This follows from the theorem:

x ≈ y ∧ u ∈ Finite =⇒ x× u ≈ y × u (26)

Now, assuming that len(C− D) and len(C− B) are both finite but not infinites-
imal (for example, len(C− D), len(C− B) ∈ IR), then len(C− D)/len(C− B)
is Finite. Hence, the ratio of infinitesimals len(Q− x)/len(Q− T) is Finite.
Therefore, from (25), (26), and using (24) the following theorem is derived:

len(Q− v)2

len(Q− T)2
≈ len(C− D)2

len(C− B)2
(27)

This gives the result that we wanted for the fifth step of the proof of Proposi-
tion 11. We are now ready for putting all the various results together in the next
and final step. This will then conclude the formal proof of the Proposition.

Step 6: Putting the ratios together

Combining (20) and (27), with the help of theorem (26) and some algebra
yields,

len(Q− v)2

len(Q− T)2
≈ len(C− D)2

len(C− B)2
∧ len(G− v)× len(P− v)

len(Q− v)2
∈ Finite

=⇒ len(G− v)× len(P− v)
len(Q− T)2

≈ len(P− C)2

len(C− B)2
(28)
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which is combined with (19) to derive the next relation between ratios. The
reader can check that both sides of the ≈ relation are multiplied by finite quan-
tities ensuring the results are infinitely close:

L× len(P− v)
len(Q− T)2

≈ len(P− C)2 × L

len(C− B)2 × len(G− v)
(29)

The next task is to combine the last result (29) with (18) to yield the follow-
ing ratio which is equivalent to Newton’s “L · QR : QT 2 = AC · L · PC2 · CD2 :

PC · Gv · CD2 · CB2”

L× len(Q− R)
len(Q− T)2

≈ len(P− C)× L× len(A− C)
len(C− B)2 × len(G− v)

(30)

But, we know that L = 2× len(B− C)2/len(A− C), so (30) can be further sim-
plified to give Newton’s other ratio “L · QR : QT 2 = 2PC : Gv”

L× len(Q− R)
len(Q− T)2

≈ 2× len(P− C)
len(G− v)

(31)

Once these ratios have been derived, Newton says “But the points Q and P
coinciding, 2PC and Gv are equal. And therefore the quantities L ·QR
and QT 2, proportional to these are also equal.”

We formalise this by showing that len(P− v) ≈ 0 as the distance between Q
and P becomes infinitesimal; thus, it follows that 2× len(P− C)/len(G− v) ≈ 1
and so, using (31) and the transitivity of ≈, we have the result

L× len(Q− R)
len(Q− T)2

≈ 1 (32)

The final step in Newton’s derivation is “Let those equals be multiplied
by SP 2

QR and L · SP 2 will become equal to SP 2·QT 2

QR ”. This final ratio gives
the geometric representation for the force, as we showed in Section 4.2, and
hence enables Newton to deduce immediately that the centripetal force obeys
an inverse square law.

We would like to derive Newton’s result in the same way, but remark that

len(S− P) ∈ Finite− Infinitesimal ∧ len(Q− R) ∈ Infinitesimal

=⇒ len(S− P)2

len(Q− R)
∈ Infinite (33)

as Q and P become coincident. So, there seems to be a problem with simply
multiplying (32) by Newton’s ratio SP 2/QR since we cannot ensure that the
results are infinitely close. Our formal framework forbids the multiplication that
Newton does as the result is not necessarily a theorem!
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Therefore, we need to find an alternative way of arriving at the same result
as Newton. Recall from Section 4.2, that we have proved the following geometric
representation for the centripetal force:

force ≈ k × len(Q− R)
len(Q− T)2

× 1

len(S− P)2
(34)

Now from (32), we can deduce that since L ∈ Finite− Infinitesimal, the
following theorems hold

len(Q− R)
len(Q− T)2

∈ Finite− Infinitesimal (35)

len(Q− T)2

len(Q− R)
≈ L (36)

len(Q− T)2

len(Q− R)
∈ Finite (37)

Since (35) holds and 1/len(S− P)2 ∈ Finite, it follows that force ∈ Finite and
so we can now use the following theorem about the product of finite, infinitely
close quantities

a ≈ b ∧ c ≈ d ∧ a ∈ Finite ∧ c ∈ Finite =⇒ a× c ≈ b× d

with (34), (36), and (37) to yield

force × L ≈ k × len(Q− R)
len(Q− T)2

× 1

len(S− P)2
× len(Q− T)2

len(Q− R)

≈ k × 1

len(S− P)2
(38)

Note that we also used the fact that ≈ is symmetric in the derivation above.
Finally from (38), we get to the celebrated result since L is finite (real) and
constant for a given ellipse,

force ≈ k

L
× 1

len(S− P)2

force ∝ultimate
1

len(S− P)2
(39)
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5 Final Comments

We would like to conclude by mentioning some important aspects of this mech-
anisation and possible changes to the geometry theory that could improve au-
tomation. We also briefly review what we have achieved.

5.1 On Finite Geometric Witnesses

We have made an important remark about steps involving infinitesimals, ratios of
infinitesimals and the infinitely close relation. Whenever we are dealing with such
ratios, care needs to be exercised as we cannot be sure what the result of dividing
two infinitesimals is: it can be infinitesimal, finite or infinite. We notice, when
carrying out our formalisation, that whenever Newton is manipulating the ratio
of vanishing quantities, he usually makes sure that this can be expressed in terms
of some finite quantity as in the proof for Step 5 of Section 4.3. Thus, the ratio of
infinitesimals is shown to be infinitely close or even equal to some finite quantity.
This ensures that such a finite ratio can be used safely and soundly within our
framework. The importance of setting up such finite geometric witnesses cannot
be under-stated since the rigour of NSA might prevent steps involving ratios of
infinitesimals from being carried out otherwise. Indeed, we have seen that the
lack of a finite witness in the last step of Newton’s original argument prevents
us from deriving the final result in the same way as he does. The alternative way
we went about deriving the result, however, is sound and follows from rules that
have been proved within our framework.

5.2 Further Work

In our previous work [13], we mentioned the existence of other methods, such
as the Clifford algebra, that provide short and readable proofs [4,11]. Although
these algebraic techniques are more difficult to relate with the geometric concepts
that are actually used in Newton’s reasoning, interesting work done by Wang et
al. has come to our attention in which powerful sets of rewrite rules have been
derived to carry out proofs in Euclidean geometry [12,16]. It would be interesting
to see how these could be integrated with Isabelle’s powerful simplifier to provide
a greater degree of automation in some of our proofs. In a sense, such an approach
would match in the level of details some of the results that Newton states (as
obvious) and does not prove in depth.

As an interesting observation, it is worth noting that the Kepler Problem
can be proved, or even discovered, using algebraic computations. This has been
demonstrated through the work on mechanics done by Wu [17], and also by Chou
and Gao [7,8], in the early nineties.

5.3 Conclusions

We have described in detail the machine proof of Proposition 11 of the Principia
and shown how the theories developed in Isabelle can be used to derive Newton’s
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geometric representations for physical concepts. We have used the same combi-
nation of geometry and NSA rules introduced in our previous work to confirm,
through a study of one of the most important Propositions of the Principia, that
Newton’s geometric and ultimate procedures can be cast within the rigour of our
formal framework. The discovery of a step in Newton’s reasoning that could not
be justified formally– in contrast with other ones where Newton explicitly sets
up finite witnesses– is an important one. The alternative derivation presented in
this work shows how to use our rules to deduce the same result soundly.

Once again, the mechanisation of results from the Principia has been an in-
teresting and challenging exercise. Newton’s original reasoning, though complex
and often hard to follow, displays the impressive deductive power of geometry.
The addition of infinitesimal notions results in a richer, more powerful geometry
in which new properties can emerge in ultimate situation. Moreover, we now
have new, powerful tools to study the model built on Newton’s exposition of the
physical world.
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Abstract. Readability is a fuzzy concept and there are several levels of
readability. Readable machine solving avails the development of mathe-
matics culture and is useful to education. There are several methods of
readable machine solving, such as the logic method, points elimination
method, geometry information searching system or deductive database
method. Based on these methods, some new types of educational soft-
ware have been developed. As an example, the intelligent educational
software “Mathematics Lab: Solid Geometry” (MSG) is introduced in
this paper.

1 Introduction

Because of various reasons, machine proving of geometry theorems is one of
the main focuses of automated reasoning. Since the pioneering work of Wu [28]
in 1977, highly successful algebraic methods for solving geometry problems have
been developed. For most geometry statements, one can assert whether it is true
or false by a computer system using these methods within seconds [1].

These algebraic methods generally can only tell whether a statement is true
or not. If one wants to know the proving process, one usually has to look at
tedious computations of polynomials. In other words, the solution produced by
algebraic methods is generally not readable.

Researchers have been studying automated generation of readable solving
using computer systems since the work by Gelernter and others [20]. With a
great amount of efforts in the past 40 years, especially with the new techniques
developed in recent years [31,2,29,10], the advance in this direction is noticeable.
There are now two classes of methods, the points elimination methods and the
geometry deductive database methods (abbr. GDD method), to produce read-
able solutions for geometric problems. Using these methods, about one thousand
non-trivial geometric problems were solved by computer programs and most of
the solutions are short and readable.

The research on readable machine solving is useful in education. Two pieces of
ICAI software namedGeometry Experts (abbr. GEX) [17,18,16] andMathematics
Lab: Solid Geometry (MSG) are developed based on this work. Now both are used
� This work was supported in part by the Chinese National Science Foundation, the
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in about 400 middle schools in China, and were warmly welcomed by teachers
and students.

This paper reviews recent advances on readable machine solving and then
introduces the ICAI software MSG. In Section 2, we give an introduction to
the readable machine solving methods. In Section 3, we introduce the points
elimination methods with some examples. In Section 4, we explain GDD (GISS)
methods briefly. Section 5 introduces the structure and working principle of
software MSG, and lists its functions. In the last Section, we give some comments
on future development and propose some problems for future research.

2 What Is Readable Solving and Why Readability Is
Wanted

By readable solving we mean algorithms that not only find the solutions of certain
problems but also generate a human readable solving process such that one can
check why the solution is true and how to get to the conclusion.

Certainly, readability is a fuzzy concept. Generally, if a solving process is very
long, it will be difficult to check and understand. So we may say that a very long
solution is not readable. But we cannot determine exactly how long is very long
or how short is readable. Moreover, there are several levels of readability. A proof
for a geometry theorem may be readable to a mathematician but not to a student
in middle school. Therefore, we use the word readable with a different meaning
in different situations. For instance, while talking about the education, readable
solving means that it can be checked and understood easily by most students.

There are two obvious reasons for seeking readability in problem solving:

1 Readability avails the development of mathematics culture. Mathematics is
not only a science field but also a culture. The development of mathematical
culture needs the support from most people. If people were told only the
mathematical conclusion but can not check and understand the process,
they will lose their interest in mathematics.

2 Readability is useful to education. While the students study mathematics,
they mainly learn the ideas, principles and methods. So they should under-
stand why a conclusion is true and how to get it. In our viewpoint, readable
machine solving can play an important role in ICAI (Intelligent Computer
Aided Instruction).

Because it is very difficult to write programs to produce readable solutions for
various mathematics problems, most mathematics software can only give the fi-
nal conclusion. The research of readable machine solving, especially in geometry,
is a very attractive field for a long time to come.

3 A Sketch of the Point Elimination Method

In 1992, a new idea for automated geometry solving was proposed and imple-
mented [31,2]. It is called the point elimination method. The program based on
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the method can produce short and readable proofs for most non-trivial geome-
try theorems. Roughly speaking, this approach is to represent the hypotheses in
a statement in a constructive way and to describe the conclusion of the state-
ment by equations of geometric quantities. The proving process is to eliminate
geometry objects from the conclusion by using a few formulae according to the
constructions and the geometric quantities. We will use two examples to illustrate
this idea.

We will use capital English letters to denote points. We denote by AB the
signed length of the oriented segment from A to B and its absolute value by AB.
The signed area SABC of triangle ABC is the usual area with a sign depending
on the order of the three vertices of the triangle. About the relationship between
the area and the length, there is a very useful tool:

Proposition 1 (The Co-side Theorem). Let M be the intersection of two
non-parallel lines AB and PQ and Q �= M . Then PM

QM
= SPAB

SQAB
.

The co-side theorem is often used to eliminate the intersecting point of two
lines. This will be shown clearly in the following example.

A B

CD

O

Figure 1-1

Example 1. Let O be the intersection of the two diag-
onals AC and BD of a parallelogram ABCD. Show
that O is the midpoint of AC, or AO

OC
= 1.

Analysis. To show AO

OC
= 1, by using the Co-side Theorem we have

AO

OC
=

SABD

SBCD
.

Point O is thus eliminated from the conclusion. Now the problem becomes to
show SABD = SBCD. Because AB ‖ CD and AD ‖ BC, we have

SABD = SABC , SBCD = SABC .

So point D is also eliminated and now it is evident that the conclusion is valid.
It is now possible to get some basic idea about the Points Elimination method

from the above example:

(1) The geometric quantities. Here they are ratios of signed lengths and signed
areas. We use the algebraic expressions in geometric quantities to represent
the goals of problems. For more problems, more geometric quantities would
be introduced.

(2) The constructions. In example 1, we can use the constructive process to
represent the conditions of the problem. Points are introduced by construc-
tions in the order: A, B, C, D, O; and are eliminated in the reverse order:
O, D, A, B, C. Of course, we can use more kinds of constructions to enlarge
the class of problems.
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(3) The formulae. To eliminate a point, formulae are needed. The main task in
building a proving system is to choose the proper formulae for eliminating
points.

Let us use the idea of Eliminating Points to solve another problem:

Example 2. M is the midpoint of the side BC of triangle ABC and N is on the
side AC such that AC = 3NC. Point P is the intersection of lines AM and
BN . Find the ratio AP

PM
.

For the problem, the constructive process can be:

C1 Take any three non-collinear points A,B and C.
C2 Draw point M as the midpoint of segment BC.
C3 Take point N on segment AC such that AC = 3NC.
C4 Draw point P as the intersection of two lines AM and BN .

Solution by Points Elimination method
AP

PM
= SABN

SBMN
(To eliminate P by Co-side Theorem)

= SABN
SBCN

2

(To eliminate M)

= 2AN

NC
= 2 ∗ 2 = 4 (To eliminate N).

Another important question is how to select the formula to eliminate a given
point. The answer depends on what kind of geometric quantity the point ap-
peared in and which construction the point was introduced by. As an instance,
if point P is introduced by construction intersection of two lines and appeared
in geometric quantity ratio of two segments, then it can be eliminated by using
the co-side theorem. Therefore, if m kinds of geometric quantities and n types
of constructions are used, the number of formulae needed for eliminating points
should be about the nm.

Based on the idea of eliminating points, we can develop various methods
for geometry solving by choosing different geometric quantities, constructions
and formulae for eliminating points or other geometry objects. In fact, a series
of algorithms based on this idea have been developed. The area method for
Euclidean plane geometry was first proposed in [31] and improved in [3,2,6]; the
volume method for solid geometry was given in [8]. To get more readable solutions
for some classes of problems, the full-angle method [5], the vector method and
complex number method [4,7,6,26] were developed. The eliminating method for
non-Euclidean geometry, by which many new theorems have been discovered,
was established later in [29]. In the following, we sketch only the methods for
Euclidean plane geometry. They are the area method, the vector or complex
number method and the full angle method.

More recently, the points elimination method has been extended to the classes
of geometry problems in which the geometric quantities can be represented as
elements in the Clifford Algebra [22,27,14,30]. Using the extended Points Elim-
ination method, a computer program has been developed, by which one can
solve problems involving lines and conics and the solutions are generally short
and readable [30].
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Among all the above methods, the area method is the most useful one. It is
a complete method for constructive propositions in Euclidean plane geometry.
In the area method, we need three geometric quantities: the sign areas, ratios of
collinear or parallel oriented segments and a new quantity named Pythagorean
Difference. The Pythagorean Difference is used to treat geometry problems in-
volving perpendiculars or angles. For points A, B, and C, the Pythagorean dif-
ference PABC is defined to be PABC = AB

2
+ CB

2 −AC
2
.

For four points A, B, C and D, the notation AB⊥CD implies that one of
the following conditions is true: A = B, or C = D, or line AB is perpendicular
to line CD. For a quadrilateral ABCD, let PABCD = PABD − PCBD = AB

2
+

CD
2−BC

2−DA
2
. Then, the Pythagorean theorem can be generalized as follow.

Proposition 2. AC⊥BD iff PABD = PCBD or PABCD = 0.

As an application of the above proposition, we give:

Example 3 (The Orthocenter Theorem). Let the two alti-
tudes AF and BE of triangle ABC meet in H. Show that
CH⊥AB.

Proof. By Proposition 2, we need only to show PACH = PBCH . Since BH⊥AC
and AH⊥BC, by Proposition 2 we can eliminate point H : PACH = PACB;
PBCH = PBCA. Thus we have the proof:

PACH

PBCH
=

PACB

PBCA
=

PACB

PACB
= 1.

In the construction process, we always use several introduced points to decide
a new point. Such as, if points A,B,C,D are known, we can get the intersection
of lines AB and CD. All of the secrets to eliminate points are how to represent
the position of a new point with that of the old ones. By the co-side theorem,
we use the ratio of areas to represent the position of intersection.

Now we are going to explain the vector method or complex number method
briefly. For each point P in the plane, let −→P be the corresponding vector from
the origin to P or complex number, and P̃ the conjugate number of −→P . Then
we denote by −−→AB = −→B −−→A the vector from point A to point B.

The inner product of vectors −−→AB and −−→CD is denoted by 〈−−→AB,
−−→
CD〉, and the

exterior product by [−−→AB,
−−→
CD].

We can define the signed area of a triangle ABC as

SABC =
[−−→AB,

−→
AC]
2

.

Then the exterior product [−−→AB,
−−→
CD] is actually the signed area or the quadri-

lateral ACBD, i.e.,

SACBD = SACD − SBCD =
[−−→AB,

−−→
CD]
2

.
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Then we have

SABC = [
−−→
AB,
−→
AC ]

2 = 1
4i((B̃ − Ã)(−→C −−→A )− (−→B −−→A )(C̃ − Ã)).

PABC = 2〈−−→BA,
−−→
BC〉 = (−→B −−→A )(C̃ − Ã) + (B̃ − Ã)(−→C −−→A ).

Therefore, the area method for Euclidean geometry can be translated into
the language of vectors or complex numbers. The solutions thus produced are
generally longer than those produced by the area method. But the vector or
complex method is still useful for solving the problems in some classes. Because
this method has two advantages:

(1) The vectors or complex numbers themselves can be eliminated as geometric
quantities directly.

(2) The vectors or complex numbers are useful to represent the relationships
about angles or similar triangles.

We give an example for vector method:

Example 4 (Cantor’s Theorem). Suppose A, B, C, D are on a circle with cen-
ter O and E,F ,G be the midpoints of CD,AB and AD respectively. If N be the
intersection of the lines through E parallel to OF and through F parallel to OE,
then the conclusion can be represented by

(〈−−→GB,
−−→
BC〉 = 〈−−→NB,

−−→
BC〉))

(i.e. GN⊥BC)

Here is the machine proof by the vector method.

〈−−→BC,
−−→
BG〉

〈−−→BC,
−−→
BN 〉

The Conclusion.

= 〈−−→BC ,
−−→
BG〉·1

(〈−−→BC ,
−−→
BE〉+〈−−→BC,

−−→
BF 〉−〈−−→BC,

−−→
BO〉)·1

S1. Elim. point N.

= 〈−−→BC,
−−→
BG〉·1

(〈−−→BC ,
−−→
BF 〉−〈−−→BC,

−−→
BO〉+1/2〈−−→BC,

−−→
BD〉+1/2〈−−→CB,

−−→
CB〉)·1

S2. Elim. point E.

= (2)·〈−−→BC,
−−→
BG〉·1

(−2〈−−→BC ,
−−→
BO〉+〈−−→BC,

−−→
BD〉+〈−−→CB,

−−→
CB〉+〈−−→BA,

−−→
BC〉)·1

S3. Elim. point F.

= (−2)·(1/2〈−−→BC,
−−→
BD〉+1/2〈−−→BA,

−−→
BC〉)·1

(2〈−−→BC ,
−−→
BO〉−〈−−→BC,

−−→
BD〉−〈−−→CB,

−−→
CB〉−〈−−→BA,

−−→
BC〉)·1

S4. Elim. point G.

= −(〈−−→BC,
−−→
BD〉+〈−−→BA,

−−→
BC〉)·(2)

(−2〈−−→BC ,
−−→
BD〉−2〈−−→BA,

−−→
BC〉)·1

S5. Elim. point O.

= 1 S6. Simplify.
For solving geometric problems about angles, using angle as the main ge-

ometric quantity directly will be better than using both area and vector. We
use a new kind of angle called full-angle, which is more convenient to machine
solving. Intuitively, a full-angle � [u, v] is the directed angle from line u to line v.
Two full-angles � [l, m] and � [u, v] are equal if there exists a rotation K such that



Readable Machine Solving in Geometry and ICAI Software MSG 73

K(l) ‖ u and K(m) ‖ v. For the geometric meaning of the addition of full-angles,
let l, m, u, and v be four lines and K be a rotation such that K(l) ‖ v. Then
� [u, v] + � [l, m] = � [u, K(m)].

For all parallel lines AB ‖ PQ, � [0] = � [AB, PQ] is a constant. For all
perpendicular lines AB⊥PQ, � [1] = � [AB, PQ] is a constant. It is clear that
� [1] + � [1] = � [0] and � [u, v] + � [0] = � [u, v].

Using full-angle method, many geometry properties can be described con-
cisely. For instance, we have:

Proposition 3. F1 For any line UV , � [AB, CD] = � [AB, UV ] + � [UV, CD].
F2 PQ is parallel to UV iff � [AB, PQ] = � [AB, UV ] for any point A �= B .
F3 PQ is perpendicular to UV iff � [AB, PQ] = � [1] + � [AB, UV ].
F4 For three non-collinear points X, A, and B, XA = XB iff � [AX, AB] =

� [AB, XB].
F5 (The Inscribed Angle Theorem) Four non-collinear points A, B, C,
and D are cyclic iff � [AD, CD] = � [AB, CB].

For ordinary angles, above propositions are true only under certain additional
conditions like “a line is inside an angle”, “two points are on the same side of a
line”, etc.

Even using the above simple properties of full-angles, we can produce short
solutions for many difficult geometry problems automatically. The technique of
eliminating points is now extended to that of eliminating lines. For instance, if
PQ is perpendicular to UV , by F3 we can eliminate line PQ from full-angle
� [AB, PQ]: � [AB, PQ] = � [1] + � [AB, UV ]. We illustrate the method with an
example.

A

E

G

B

C

D
FH

Figure 1-3

Example 5 (Miquel’s Axiom). 1 If four circles are
arranged in sequence, each two successive circles in-
tersecting, and a circle pass through one pair of each
such pair of intersections, then the remaining inter-
sections lie on another circle.

Let us assume that the four circles are ABFE, BCGF , CDHG and DAEH .
Show that if points A, B, C and D are cyclic then points E, F , H and G are
also cyclic.

The Machine Proof
� [HG,HE]−� [FG,FE]

(� [HG,HE]= � [HG,HD]+ � [HD,HE]= � [GC,DC]−� [EA,DA],
because cyclic(G, H, D, C), cyclic(E, H, D, A). (F1, F5) )

= − � [FG,FE]+ � [GC,DC]−� [EA,DA]

1 All previous methods failed to prove this theorem automatically by far due to com-
puter system memory limitation.
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(� [FG,FE]= � [FG,FB]+ � [FB,FE]= � [GC,CB]−� [EA,BA],
because cyclic(G, F , B, C), cyclic(E, F , B, A). (F1, F5) )

= � [GC,DC]−� [GC,CB]−� [EA,DA]+ � [EA,BA]

(� [GC,DC]−� [GC,CB]=−� [DC,CB]. (F1) )
= − � [EA,DA]+ � [EA,BA]−� [DC,CB]

(− � [EA,DA]+ � [EA,BA]= � [DA,BA]. (F1) )
= − � [DC,CB]+ � [DA,BA]

(� [DC,CB]= � [DA,BA],
because cyclic ( C, D, B, A). (F5) )

= � [0]

The full-angle method as reported here is not complete. By using the area
method, we can give a complete method for proving theorems involved full-
angles. Full-angles are also useful in GDD method, which will be mentioned in
next Section.

4 The Geometric Information Searching System

To obtain proofs in a more traditional style, the algorithm based on the search
method has been proposed in [9,10]. It is called GDD (Geometry Deductive
Database) method or GISS (Geometry Information Searching System) method.
For a given geometric configuration, using GDD method, one can get the infor-
mation bank containing all the messages about the figure that can be deduced
from the built-in reasoning rules. It is meaning that the fixpoint

The work uses the synthetic approaches are closely related to GDD method.
In [23], Nevins used a combination of forward chaining and backward chaining
with emphasis on the forward chaining. But before [9], all previous synthetic work
deals with theorems involving straight lines only and the fixpoint is not reached.
The idea of adding auxiliary points and the problem of including circles into the
program are discussed respectively in [25,24] and [23] but both not implemented.

The program based on GDD has been tested with 160 geometry configura-
tions ranging from well-known geometry theorems such as the centroid theorem,
the orthocenter theorem, and Simson’s theorem to problems recently proposed
in the problem section of the American Mathematical Monthly. The program
not only finds most of the well-known properties of these configurations but also
often gives many unexpected results. As is known, most of the 160 theorems can
not be proved by the previous programs based on synthetic approaches.

The basic ideas behind the GDD method, such as fixpoints and the treat-
ment of negative clauses, come from the deductive database theory [15]. But the
strength of GDD method is mainly based on the following improvements:

(1) We propose the idea of structured deductive database. In traditional de-
ductive databases, each n-ary predicate is associated with an n-dimensional
relation. This is not suitable for geometry for two reasons: the excessively
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large database and repetitive representation of information. On average, the
databases for the 160 tested geometry configurations would be of size 242,117
if using the traditional representation. This problem was solved in GDD by
using some simple mathematical structures such as sequences and equivalent
classes to represent facts in the database. The size of the structured database
is one thousand times smaller.

(2) We propose a new data-based search strategy . GDD keeps a list of “new
data” and for each new data the system searches the rule set (or intensional
database) to find and apply the rules using this data. If using the data-based
strategy, the redundant deductions caused by repeated application of a rule
to the same facts will be automatically eliminated.

(3) Selecting appropriate rules. All the previous work based on the synthetic
approach [20,23] uses geometric rules about the congruent triangles as its
basic geometric rules. Most of the basic results in geometry such as the cen-
troid theorem, the orthocenter theorem, and Simson’s theorem are beyond
the scope of these rules without adding auxiliary points.

(4) Adding of auxiliary points. In GDD, about twenty rules of adding auxil-
iary points are implemented and thirty nine of the one hundred sixty con-
figurations solved by the program need auxiliary points. This is the first
implementation of a nontrivial set of rules of adding auxiliary points.

(5) Numerical diagrams of geometry statements are used as models to deal with
the negative information in the rules. The program can construct the diagram
automatically for a class of constructive geometry statements. In all the
previous work using diagrams as models [20], the diagrams are constructed
by the user.

Here we give an example for the GDD method:

Example 6. Let the three altitudes of a triangle ABC are AD,BE,CF . Also
point D is on the segment BC. Show � [FDA] = � [ADE].

The conclusion can be represented by full-angles in form

� [DF, DA] = � [DA, DE]

The machine proof by GDD method is like the following:

(1) � [DF, DA] = � [DA, DE] (by (2) and DB⊥DA).
(2) � [DE, DB] = � [DB, DF ] (by (3)+(4)).
(3) � [BD, BF ] = � [ED, EC] (by (5)).
(4) � [BF, DF ] = � [EC, CD] (by (6)).
(5) A, D, B, E are concyclic (by DB⊥DA and EB⊥EA).
(6) A, D, C, F are concyclic (by DC⊥DA and FC⊥FA).

By the GDD method, the computer system not only obtains the conclusion,
but also produces a lot of informations of the figure, such as: 24 pairs of equal
angles, 7 sets of similar triangles and 30 pairs of equal ratio of segments.
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5 Educational Software MSG

There are several methods to produce readable solving for geometry problems.
Every method has specific advantages. For the same theorem, one can get proofs
with different styles by using different methods. Using the above method, about
one thousand non-trivial geometry problems (most of them can be found
in [2,12,13,11]) were solved by computer programs and most of the solutions
are readable and short.

These automated reasoning methods for readable machine solving are mature
enough to be used in ICAI. Using these methods, we can make our educational
software more intelligent and attractive. How to use automated reasoning meth-
ods to develop educational software? What would be the educational software
with automated reasoning like? The intellective educational software MSG [21]
may give us some explanation.

The full name of MSG is Mathematics Lab: Solid Geometry. It is one of a
series educational software named Mathematics Laboratory. To fit the request of
teachers and students in middle schools and high schools, the working style of
MSG is more traditional than GEX. It means that, unlike the volume method for
solid geometry in [8], we use only quantities that appeared in the geometry text-
book. The program of MSG consists mainly of four parts. They are constructing
tools, information boxes, reasoning rules and the solving controls.

The constructing tools allow users not only to draw solid geometric figure,
but also send the constructing process to information boxes. Based on the infor-
mation, MSG can do graphic translating and reasoning for solving.

A deductive database consists of information boxes. Every box is for saving
one kind of information. There are four kinds of angles, six kinds of distances,
three kinds of perpendicular and three kinds of parallel in solid geometry. So the
database is more complex than that in plane geometry.

We use about 220 reasoning rules. A rule may be one axiom, lemma, theorem,
formula, definition or skill for solving. They are chosen from plane and solid
geometric textbooks in middle schools and high schools in China. When a solid
figure was drawn and a problem was proposed, MSG can do reasoning by using
part or all of the rules to get new information about the figure. Of course, new
information will be put into the database. The process will stop until a solution
is obtained.

The solving controls can select or remove rules used in reasoning. This is
mainly according to the knowledge level of students or the request by user.
When automated solving failed, the controls may give, by an expert knowledge
bank, some suggestions about how to add auxiliary points and auxiliary lines.

We will show the functions of MSG using the following example.

Example 7. ABCD is a square, EA ⊥ planeABCD, AF ⊥ BE, F is the foot
from A to line BE and G the foot from F to line CE. Show that AG ⊥ EC.
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FUNCTION 1. Dynamical Construct and Generating Problems

To solve a problem by computer system, it is necessary to make the envi-
ronment in which the user can describe his problems conveniently. After the
software MSG was started, the construction menu or toolbar can help the user
to draw various solid figures by mouse and to prepare proposing problems. This
is the construction of our example:

1. Take two points A, B in space.
2. Draw a square ABCD.
3. Add segments EA, EB, EC.
4. Take a point E at the line through A and perpendicular to plane ABC.
5. Draw the foot F from point A to line BE.
6. Draw the foot G from point F to line EC.
7. Add segment AG.

Now the figure you constructed is as the following figure.

While you drag a free point by mouse, the graph would change, but it still
keeps the geometry properties given during constructing. The program will auto-
matically remember the constructing procedure. These graphs are dynamical and
can be changed. They can always keep their properties given by the constructing
procedure. In other words, they have intelligence and know the characteristics
they should have. When a graph is constructed, you can add a conclusion such
that some problems will be generated. In the above example, we should add the
conclusion: AG ⊥ EC (Figure 2-1).

FUNCTION 2. Automated Reasoning and Alternate Solving

Based on the basic properties of the graph and the additional conditions,
using a series of rules (axioms, definitions, theorems and formulae), the program
can find many geometric properties of the graph and solve the problems proposed
by user. For this example, the program will automatically get the conclusion
AG ⊥ EC (Figure 2-2)
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and list the reasons step by step. If one asks for the rule used in a step, the
program can give details of the rule (Figure 2-3).
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The procedure of automated reasoning is closely related to the figures. If
point D is between point A and B, AB = AD+BD, otherwise AB = BD−AD.
Users can do exercises themselves by using the tools of “Manual Solving”. When
you give yourself a reasoning step by step, the program will judge each step
and give comments on your reasons. The program will keep the reason step if it
thinks it is right (Figure 2-4).

Alternatively, the user may choose some facts from the information pro-
vided by computer system as the presupposition. Then the computer system
will do a step of reasoning based on the facts, until the conclusion become clear
(Figure 2-5). This is called “Alternate Solving”.

Alternate solving is easier than “Manual Solving”. The user can choose one or
more geometrical information from the database including known conditions and
deduced properties. The computer system will infer more properties or conclu-
sions from them and give the new information for the user to choose (Figure 2-5).
When the conclusion is obtained, the computer system will generate a proof by
the thinking of the user. Users can inquire the detail of every reasoning rule any-
time (Figure 2-3) and try to remove or add some built-in rules. If you inform the
computer system that your students are learning some chapter, the computer
system will use only the rules learned by the students (Figure 2-6).

FUNCTION 3. Measure and Rotation in Space

The computer system can find the length of a segment, the degree of an
angle, the area of a triangle, and the volume of a prism, etc. The ruler could be
fixed or dynamical. The data measured will change while the graph is changed.
In the above example, ABCD should be a square. But its four angles don’t seem
to be right angle and its four sides don’t seem to be equal to each other. Users
can measure the lengths of AB, BC and its angles to check whether ABCD is
a square or not. And one can make a rotation to see that ABCD is indeed a
square at some position (Figure 2-7). The data in the screen will be changed
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along with points moving. When EA = AB, � GAF is of 30 degree (Figure 2-8).
Then, we discovered an interesting problem. The computer system will give its
proof using the function of reasoning (Figure 2-9).
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FUNCTION 4. Part Copy and Translation of Figure

Using this function, we can imitate the partition of a solid. For instance,
we can draw a prism ABC −XY Z first, then copy three tetrahedrons AXY Z,
ABCZ and ABY Z from this prism and move them to other places using the
parallel moving function. So that we can clearly explain the truth of “The volume
of a pyramid is equal to 1/3 of the prism which has with the same bottom and
equal height with the pyramid” (Figure 2-10).
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FUNCTION 5. Section of a Solid

The user can cut a prism, a pyramid, etc. with arbitrary assigned plane. Such
as the section of cube which is cut by its main diagonals mid-perpendicular-plane
is a regular hexagon. And we can see its exact shape after rotating the cube to
an adequate position (Figure 2-11).

6 Concluding Remarks

We have seen that machine readable solving in geometry is useful for developing
the ICAI software. The ICAI software based on automated reasoning can pro-
vide a micro-world, which represents the knowledge structure of real solids. The
micro-world has at least three advantages for teaching and learning:

(1) In the micro-world, the knowledge about the solids is divided into some
elements and relationships, and these basic parts can also be combined to
make meaningful structures. User can control and operate on them with both
graphic translating and symbolical reasoning. So it is a full-scale model of
real solids.

(2) The dynamical construction provides an environment for students to study.
They can change the figure on screen continuously by hand and observe it
to find geometric conjectures.

(3) It can be a stage on which teachers can build their knowledge bank by
saving solved problems. The bank may help teachers to prepare their lessons
more easily.

Under the teacher’s instruction, students can do constructing, reasoning,
computing, measuring and figure translating in the micro-world. With the com-
puter system, they may ask, answer, guess and create problems. Learning will
become more interesting.

But this is just a starting point. There remains a lot of work to do. Such as:

(1) To develop similar software for physics and chemistry. Problems in these
courses may be easier than in geometry. But representing knowledge is more
complex, and there would be more kinds of problems.

(2) To improve the program such that users can add reasoning rules proved by
themselves.

(3) In machine readable solving for geometry, it is faster to use signed area
and full-angle. But solutions using traditional geometric quantities would be
more welcomed. An idea is to first reason with any effective tool, and then
translate the solution into a more traditional style.

We hope that more work will appear in this direction.
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bases, Proc. of ISSAC-93, Kiev, pp. 301–310, ACM Press, 1993. 70

27. Wang, D., Clifford algebraic calculus for geometric reasoning with application to
computer system vision, Automated Deduction in Geometry, Ed. D. Wang, LNAI
1360, pp. 115–140, Springer, 1997. 70

28. Wu, W. T., On the decision problem and the mechanization of theorem-proving
in elementary geometry, Scientia Sinica, 21, 159–172. Re-published in Automated
Theorem Proving: after 25 Years, Ed. W. W. Bledsoe and D. W. Loveland, pp. 235–
242, 1984. 67

29. Yang, L., Gao, X. S., Chou, S. C. and Zhang, J. Z., Automated production of
readable proofs for theorems in non-Euclidean geometries, Automated Deduction
in Geometry, Ed. D. Wang, LNAI 1360, pp. 171–188, Springer, 1997. 67, 70

30. Yang, H. Q., Zhang, S. G. and Feng, G. C., Clifford algebra and mechanical geom-
etry theorem proving, Proc. of the Third Asian Symposium on Computer Mathe-
matics, Ed. Z. B. Li, pp. 49–64, Lanzhou University Press, 1998. 70

31. Zhang, J. Z., Chou, S. C. and Gao, X. S., Automated production of traditional
proofs for theorems in Euclidean geometry, I. the Hilbert intersection point theo-
rems, TR-92-3,CS Dept., WSU, 1992. Also in Annals of Mathematics and AI, 13,
109–137, 1995. 67, 68, 70



Plane Euclidean Reasoning

Desmond Fearnley-Sander

Department of Mathematics, University of Tasmania
GPO Box 252-37, Hobart, Tasmania 7001, Australia

dfs@hilbert.maths.utas.edu.au

http://www.maths.utas.edu.au/People/dfs/dfs.html

Abstract. An automatic reasoning system for plane Euclidean geom-
etry should handle the wide variety of geometric concepts: points, vec-
tors, angles, triangles, rectangles, circles, lines, parallelism, perpendicu-
larity, area, orientation, inside and outside, similitudes, isometries, sine,
cosine, ... . It should be able to construct and transform geometric ob-
jects, to compute geometric quantities and to prove geometric theorems.
It should be able to call upon geometric knowledge transparently when it
is needed. In this paper a type of ring generated by points and numbers
is presented which may provide a formal basis for reasoning systems that
meet these requirements. The claim is that this simple algebraic struc-
ture embodies all the concepts and properties that are investigated in
the many different theories of the Euclidean plane.

A reasoner for plane Euclidean geometry would

– know basic geometric facts;
– know basic trigonometry;
– handle complex numbers;
– compute geometric quantities, such as areas of polygons and cosines of an-

gles;
– work with diagrams;
– interact transparently with reasoners that need geometry;
– prove geometry theorems.

The best current computational systems are far from meeting these require-
ments. On the one hand, while computer algebra systems such as Mathematica
and Maple, have some capability of handling local aspects of this program, such
as deriving trigonometric formulae, their reliance on ad hoc rules makes the
problem of integration of these fragmentary capabilities quite intractable. On
the other hand, the wonderful geometry theorem provers based on the meth-
ods of Wu and Buchberger, are dependent upon introduction of coordinates, a
feature that in its own way is ad hoc, since we know that coordinates are in
Fact substantially irrelevant. Though one might hope that Euclid’s original ax-
iomatic approach would be the way forward, attempts to automate it have had
scant success.

In my opinion what is needed for the automation of reasoners with the in-
dicated capabilities is an expressive, computationally tractable, simple uniform
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formalism. In this paper a candidate for that role is presented. An algebraic
structure, called a Euclid ring, is introduced that is generated by points and real
numbers, that fully supports Euclidean plane geometry, trigonometry, transfor-
mations and complex numbers, and that is coordinate-free. The vector fragment
of this structure is the well-known two-dimensional positive-definite Clifford al-
gebra introduced by W. K. Clifford. To use this algebra, many authors identify
points with “vectors from the origin”; this is ungeometrical and avoidable, as
our treatment shows.

No new geometric results are presented in this paper. Its thrust is rather to
demonstrate the richness of Euclid ring semantics by showing how concepts such
as angle and area arise naturally, and to demonstrate the algebraic power of the
Euclid ring formalism by giving a range of elementary computations and proofs
that may be obtainable automatically by methods currently under development.

1 Mathematical Structure

A Euclid ring is a ring Ω, with unit element 1, and subsets R and P such that

1. R∪ P generates Ω;
2. R is the field of real numbers and is a subring of Ω;
3. P is a 2-dimensional affine space over R;
4. αA = Aα for α ∈ R, A ∈ P ;
5. (B −A)2 > 0 for A �= B ∈ P ;
6. 0 /∈ P .

Elements of P are called points and denoted by Roman capitals A, B, C,
. . . , Q; note that U , V , W , X , Y and Z do not denote points. Real numbers
are denoted by Greek letters, α, β, γ, . . . . The number 0 is the additive identity
of the ring and the number 1 is its multiplicative identity. P is closed under
affine combinations (meaning that A,B ∈ P , α + β = 1 ⇒ αA + βB ∈ P)
and is generated by three linearly independent points. Indeed, thanks to items 1
and 3, Ω itself is generated by the real numbers and three linearly independent
points.

All elements of a Euclid ring are sums of products of numbers and points and
it is easy to calculate with them; for example, to verify that if P = 1

3 (A+B+C)
then

(A−B)2 + (B − C)2 + (C −A)2 = 3
[
(A− P )2 + (B − P )2 + (C − P )2

]

is a matter of high-school algebra (though one must not assume that multipli-
cation is commutative).

We will progressively show how various types of geometric objects, includ-
ing vector and angle, geometric quantities, including length and area, geometric
predicates, including perpendicularity and parallelism, and geometric transfor-
mations, including translation and similitude, are represented in Euclid ring
terms. Note, however, that, just as in natural language, it is not the case that
every well-formed term has an interpretation.
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2 Rules of Interpretation and Physical Facts

A good way to approach the semantics of a Euclid ring is to view it as providing
an algebraic theory of a physical domain, the drawing board of the engineer or
architect. The link between Ω and the physical drawing board requires two rules
of interpretation: the elements of P are to be interpreted geometrically, as their
name suggests, as points, and the number (B − A)2 is to be interpreted as the
square of the distance (in some fixed unit) between the points A and B. We shall
write |B −A| = √

(B −A)2.

Fig. 1. Facts 1, 2 and 3.

The interpretation of other algebraic entities will, as we shall see, be forced
by these rules of interpretation and by certain fundamental physical facts like
(see Figure 1) the following:

Fact 1. A point P lies on the line segment between points A and B if and only
if the distance from A to B is the same as the sum of the distances from A
to P and from P to B;

Fact 2. Points A,B,C and D are successive vertices of a parallelogram if and
only if the point mid-way between A and C is the same as the point mid-way
between B and D;

Fact 3. A parallelogram with vertices A,B,C and D is a rectangle if and only
if the distance from A to C is the same as the distance from B to D;

Fact 4. The area of a square with side-length 1 is 1.

It is to be emphasized that these are statements about the physical world of
the drawing board which we seek to model. Although, for example, a rectangle
may be defined in various ways, we always find, upon measurement, that Fact 2
and Fact 3 are confirmed, and in any model we shall certainly insist that the
corresponding statements, formulated mathematically, be true.

Fact 1 forces the interpretation of P = αA+βB where α+β = 1, α ≥ 0 and
β ≥ 0; for then we have

P = αA+ βB ⇔ P −A = β(B −A) and B − P = α(B −A),
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and these equations imply that |P −A| = β |B −A| and |B − P | = α |B −A|
and hence that |B −A| = |B − P |+|P −A| . If (1) is to hold we must interpret P
as the point which divides the line segment from A to B in the ratio β : α. (See
Figure 1.) The interpretation of a general affine combination (for which α+β = 1
but either α or β may be negative) now follows easily. In particular, 1

2 (A + B)
is the mid-point of the line segment between A and B.

Fig. 2. A thorem on quadrilaterals.

We now find that even such a simple algebraic identity as

1
2

[
1
2
(A+B) +

1
2
(C +D)

]
=

1
2

[
1
2
(A+ C) +

1
2
(B +D)

]

=
1
2

[
1
2
(A+D) +

1
2
(B + C)

]

has a geometric interpretation (see Figure 2) which, though obvious, is a non-
trivial fact. Having shown that P = 1

3 (A+B+C) is the centroid of the triangle
with vertices A,B and C we see that the algebraic identity stated in Section 1
is a metric theorem which can be checked experimentally by making careful
drawings and measurements. Each interpretable theorem of our algebra affords
a further test of the efficacy of our model — if ever such a theorem, in its physical
interpretation, fails to hold, we must reject the model. Every model is tentative,
even Euclid’s.

3 Vectors

Fact 2 (see Figure 1), together with the equivalence

B −A = C −D ⇔ 1
2
(A+ C) =

1
2
(B +D)

forces us to interpret the difference of two points B − A as the vector from A
to B. We will use letters U, V,W,X, ... from the end of the alphabet to denote
vectors.
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If P is a point then 1P = P , a point, but no other real multiple of P
can be a point; for if αP , with α �= 1, was a point Q, we would have 0 =
α/(α − 1)P − 1/(α − 1)Q ∈ P . We do not need to interpret αP for α different
from 0 and 1. Also a vector A−B cannot be a point P , since that would entail
that 1

2A = 1
2 (B + P ) ∈ P , contrary to the above.

The equivalence
B = A+X ⇔ X = B −A

shows what it means to add a vector to a point. The identity

C −D = (A+ C −D)−A

shows that any point may be chosen as the starting point of a given vector. The
identity

(C −A) = (C −B) + (B −A)

shows that the set of all vectors is closed under addition and also shows how
addition of vectors is to be interpreted. The (usual) interpretation of multipli-
cation of vectors by real numbers and closure of the set of vectors under this
operation are easy to establish. Hence the set of all vectors is a linear space; it
is two-dimensional, having as basis the pair of vectors B −A and C −A where
A,B and C are linearly independent points. Note, though, that some of what
follows is independent of dimension.

Fig. 3. A theorem on ratios of lengths.

Example. A familiar classical affine theorem (see Figure 3) is expressed by the
implication:

D = αA + βB, E = αA+ βC ⇒ D − E = β(B − C). ✷

Example. As an example of a modern affine theorem (involving the notion of
vector in an essential way) we invite the reader to interpret and generalize the
identity:



Plane Euclidean Reasoning 91

[
1
2
(A1 +A2)− 1

2
(A6 +A1)

]
+

[
1
2
(A3 +A4)− 1

2
(A2 +A3)

]

+
[
1
2
(A5 +A6)− 1

2
(A4 +A5)

]
= 0. ✷

The square of the vector X from A to B is the positive real number X2 =
(B − A)2, interpreted, of course, as the square of its length, and we shall write
|X | = √X2.

4 Perpendicularity

From an algebraic point of view the Fact that

(X + Y )2 = (X − Y )2 ⇔ Y X = −XY ⇔ (X + Y )2 = X2 + Y 2

is trivial, but its geometric interpretation is subtle and important. (It will be
made completely clear when, in a moment, we show how a product XY is to
be interpreted.) The empirical Fact 3 (see Figure 1) forces us to define per-
pendicularity of vectors X and Y in such a way that X⊥Y if and only if
(X + Y )2 = (X − Y )2; or, equivalently, via

X⊥Y ⇔ Y X = −XY.

Then one of the above equivalences is the theorem of Pythagoras.

Fig. 4. An isosceles triangle theorem.

Example. The theorems suggested by Figures 4 and 5 are proved as follows:

X2 = Y 2 ⇒ (X + Y )(X − Y ) = −(X − Y )(X + Y )
⇒ X + Y ⊥ X − Y. ✷
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Fig. 5. A circle theorem.

Example. (See Figure 6.) The ring identity

(B − C)(A − P )+ (C −A)(B − P ) + (A−B)(C − P )
= −(A− P )(B − C)− (B − P )(C −A)− (C − P )(A−B)

implies that the altitudes of a triangle intersect; for it shows that if B−C⊥A−P
(that is, if (B − C)(A − P ) = −(A − P )(B − C)) and C − A⊥B − P then
A−B⊥C−P. It is easy to devise a similar proof that the perpendicular bisectors
of the sides intersect. Theorems arising in this way from identities may be said
to be embodied in a Euclid ring. So far as I know the problem of characterising
those theorems that are embodied is open. ✷

Fig. 6. A theorem on altitudes.

A vector Y with Y 2 = 1 is called a direction. The direction of a non-zero
vector X is X

|X| .

Example. (See Figure 7). The line with direction Y through a point B = A+X
on the circle with centre A and radius |X | consists of all points P = A+X+ τY
with τ ∈ R. The condition for P to lie on the circle is that (X + τY )2 = X2, or,
equivalently, that

τ = 0 or τ = −(XY + Y X);
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hence there is a unique interSection point if and only if Y⊥X. Observe that
XY + Y X is a real number, since it equals (X + Y )2 −X2 − Y 2. ✷

Fig. 7. A theorem on secants.

5 Parallelism

Vectors X and Y are parallel, and we write X‖Y , if one is a multiple of the other.
It is clear that if X‖Y then XY = Y X. Let us prove the converse. Assuming
without loss of generality that X and Y have equal lengths, we have

XY = Y X ⇒ (X − Y )(X + Y ) = 0
⇒ Y = ±X
⇒ Y ‖X.

We have here used the Fact that any non-zero vector V is invertible (with
inverse V −1 = V

V 2 ) and hence

VW = 0⇔ V = 0 or W = 0.

6 Angles

Whatever definition one adopts for the (oriented) angle X̂, Y between direc-
tions X and Y one would like it to be such that whenever X̂, Y = X̂ ′, Y ′ one
has (as Figure 8 suggests)

X − Y ′ ‖ Y −X ′,
X + Y ′ ‖ X ′ + Y,

X + Y ′ ⊥ Y −X ′

and X ′ + Y ⊥ X − Y ′;
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equivalently, the following four equations should hold:

XY − Y ′Y −XX ′ + Y ′X ′ = Y X − Y Y ′ −X ′X + Y ′Y ′

XX ′ +XY + Y ′X ′ + Y ′Y = X ′X + Y ′Y ′ + Y X + Y Y ′

XY + Y ′Y −XX ′ − Y ′X ′ = −Y X − Y Y ′ +X ′X + Y ′Y ′

XY − Y ′Y +XX ′ − Y ′X ′ = −Y X + Y Y ′ −X ′X +X ′Y ′.

Fig. 8. Equality of angles.

Adding, we see that these equations imply that

XY = X ′Y ′.

Accordingly, we define the angle X̂, Y between directions X and Y to be the
product XY.

As it is sometimes convenient to talk about the angle X̂, Y between non-zero
vectors X and Y we define this to be the angle between their directions:

X̂, Y =
XY

|X | |Y | .

Note that it is only for directions X and Y that the angle X̂, Y is the product
XY .

Example. (See Figure 9.) Let X2 = 1 = X2
1 , Y �= 0. Then

X̂, Y = X̂1, Y ⇒ XY = X1Y
⇒ X = X1

⇒ X1‖X.

Here we have multiplied both sides of one equation by Y −1. ✷

If X,Y and Z are directions then

(XY )(Y Z) = XY 2Z = XZ.
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Fig. 9. A theorem on parallel lines.

Note that an arbitrary angle VW between directions V and W has the form
Y Z for a suitable Z, namely Z = Y VW ; it will be shown in a moment that Z
is a direction. Assuming this, we see that the set of all angles is closed under
multiplication. Since 1 = X2 is an angle and

XY Y X = 1 = Y XXY,

angles form a group under multiplication, with (XY )−1 = Y X. In particular
XY determines Y X.

Fig. 10. A theorem on congruent triangles.

Example. (See Figure 10.)

X2 = X2
1 , Y

2 = Y 2
1 , XY = X1Y1 ⇒ (X − Y )2 = (X1 − Y1)2.

This is a familiar result about congruence of triangles. The theory of congruence
may be developed without introducing transformations and the same applies to
similarity. ✷

We call 1 = XX the identity angle, −1 = −XX the straight angle, the
complement of XY and −Y X its supplement. Then, for example (see Figure 11)

XY Y (−X) = X(−X) = −1.
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Fig. 11. Supplementary angles.

Readers may like to interpret the identity

(X1X2)(X2X3)...(Xn−1Xn)(XnX1) = 1

where the Xj are directions.
The geometric meaning of the conditions for perpendicularity and parallelism

now become clear (see Figure 12, (a) and (b)):

X⊥Y ⇔ X̂, Y = X̂,−Y ,

X‖Y ⇔ X̂, Y = Ŷ, X.

Fig. 12. Right angles and straight angles.

Let us now prove that if X,Y and Z are vectors then so is XY Z. This holds
trivially if X and Y are linearly dependent, and otherwise it holds for Z = X
by virtue of the identity

XYX =
[
(X + Y )2 −X2 − Y 2

]
X − Y

and for an arbitrary Z = αX + βY because

XY Z = αXYX + βXY 2.

Moreover if X and Y are directions then

(XY Z)2 = α2 + αβ(XY + Y X) + β2 = Z2;

in particular, (a result that was needed above) if Z is also a direction then so is
XY Z. This argument also entails that the group of angles is Abelian, since for
directions X,Y and Z we have

XY ZXY Z = 1
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and hence
ZXYZ = Y X = Y ZZX.

IfX and U are arbitrary directions one easily checks that the vector U−XUX
is perpendicular to X ; hence there exists a direction Y perpendicular to X.

7 Orientation

Let X and Y be a pair of perpendicular directions. If V and W are any other
such pair, then XY = −Y X and VW = −WV and so

(XY )2 = −1 = (VW )2.

We know that VW = XZ for a suitable direction Z, and hence that

(XY )2 − (XZ)2 = 0;

because multiplication of angles is commutative this is equivalent to

(XY −XZ)(XY +XZ) = 0

or, indeed, to
X(Y − Z)X(Y + Z) = 0.

It follows immediately that either Z = Y or Z = −Y and hence that either
VW = XY or VW = X(−Y ) = −XY.

When we model a line as a one-dimensional affine space a choice of orientation
(left and right) must be made. The situation in two dimensions is similar. Write
i = XY. Then i and −i are called right angles, and one of them, say, i, is called
positive and the other negative.

Note that

VW = ±i⇒ (VW )2 = i2 = −1⇒ VW = −WV ⇒ V⊥W.

Multiplication of positive and negative right angles has the expected proper-
ties (see Figure 12 (c)):

i2 = (−i)2 = −1,
i(−i) = (−i)i = 1,
(−1)2 = 1.

For any direction V the unique direction W such that VW is a positive right
angle is V i :

VW = i⇔W = V i.

Hence i anti-commutes with vectors:

V i = V (V V i) = −V (V iV ) = −iV.
The directions V and V i are linearly independent (or not parallel) since

V V i = V iV ⇒ V 2i = −V 2i⇒ V = 0.

Hence they form a basis for the space of all vectors.
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8 Trigonometry

Consider the angle VW between directions V and W . Since (see Figure 13)

W = αV + βV i⇔ VW = α+ βi

we see that VW is uniquely expressible as a linear combination of the angles 1
and i. We define the cosine and sine of the angle VW = α + βi to be the real
numbers

cos VW = α and sin VW = β.

Despite appearances these definitions are genuinely coordinate-free.

Fig. 13. Sine and cosine of the angle VW .

Since also WV = α− βi we have

1 = VWWV = (α+ βi)(α − βi) = α2 + β2 = cos2 VW + sin2 VW.

Hence −1 ≤ cos VW ≤ 1 and −1 ≤ sin VW ≤ 1; the first of these is the
Cauchy-Schwartz inequality. Of course, cos 1 = 1, sin 1 = 0, cos i = 0,
sin i = 1, cos(−1) = −1, sin(−1) = 0, cos(−i) = 0 and sin(−i) = −1.

Also, for example (see Figure 13),

cos W (V i) = cos(α− βi)i = cos(β + αi) = sin VW.

The “addition formulae” are obtained by taking real and imaginary parts in
a product

(VW )(XY ) = (α+ βi)(γ + δi)
= (αγ − βδ) + (αδ + βγ)i

to get
cos(VW )(XY ) = cos VW cos XY − sin VW sin XY

and
sin(VW )(XY ) = cos VW sin XY + sin VW cos XY.

If X and Y are arbitrary non-zero vectors, we have

cos X̂, Y =
XY + Y X

2 |X | |Y | and sin X̂, Y =
i(Y X −XY )
2 |X | |Y | .
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Fig. 14. The cosine and sine rules.

Immediate consequences are the cosine rule (see Figure 14 (a)),

(X + Y )2 = X2 + Y 2 +XY + Y X

= X2 + Y 2 − 2 |X | |Y | cos X̂, Y

and the sine rule (see Figure 14 (b)): if X + Y + Z = 0, then

XY − Y X = Y Z − ZY = ZX −XZ

and hence
sin X̂,−Y
|Z| =

sin Ŷ,−Z
|X | =

sin Ẑ,−X
|Y | .

The cosine rule and the Cauchy-Schwartz inequality together entail the tri-
angle inequality,

|X + Y | ≤ |X |+ |Y | .
An angle is called acute if its cosine is positive and obtuse otherwise; and it is

called positive if its sine is positive and negative otherwise. It is also convenient
to call the sign (1 or 0 or −1) of sin X̂, Y the orientation of X̂, Y .

It is now easy to prove, for example, that at least two angles of any triangle
are acute and to prove that the product of two acute positive angles is positive.
Also one may relate the present definitions to properties of triangles by showing
that for a triangle 〈A,B,C〉 with a right angle at B the cosine of the angle
between the vectors B − A and C − A is |B−A|

|C−A| while its sine has absolute

value |C−B|
|C−A| .

9 Complex Numbers

Let U , V , U1 and V1 be directions, with ξUV = ηU1V1, where ξ > 0 and η > 0
are real numbers. We will prove that ξ = η and (hence) UV = U1V1. Indeed, we
may write UV ′ = U1V1 for a suitable direction V ′ and we have

ξUV = ηUV ′ ⇒ ξV = ηV ′

⇒ ξ2 = η2

⇒ ξ = η;
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here we first multiplied on the left by U and then squared.
Any positive multiple ξUV of an angle may also be regarded as a ratio of

vectors U−1(ξV ); conversely, any ratio of vectors X−1Y (where X �= 0) is a
positive multiple of an angle:

X−1Y =
|Y |
|X | (

XY

|X | |Y | ) =
|Y |
|X |X̂, Y .

Clearly X−1Y does not determine either X or Y but, by what has just been
shown, it does determine both the angle X̂, Y and the ratio |Y |

|X| . Equivalently,

X−1Y = X−1
1 Y1 ⇔ X̂, Y = X̂1, Y1 and

|Y |
|X | =

|Y1|
|X1| ;

Thus X−1Y = X−1
1 Y1 if and only if the triangles with edge vectors X

and Y, X1 and Y1 are directly similar.
As we shall show in a moment, it is reasonable to call ratios of vectors X−1Y

complex numbers. (Note that X−1Y = 0 ⇔ Y = 0.) The number |Y |
|X| is the

absolute value of X−1Y and X̂, Y is its angle. The complex number X−1Y also
determines another complex number Y X−1, its conjugate, given by

Y X−1 =
|Y |
|X | Ŷ, X,

since Ŷ, X = (X̂, Y )−1.
Real numbers are ratios of parallel vectors:

Y ‖X ⇔ Y = αX where α ∈ R ⇔ X−1Y = α ∈ R.
Imaginary numbers are ratios of perpendicular vectors:

Y⊥X ⇔ Y = βXi where β ∈ R ⇔ X−1Y = βi ∈ Ri.
And complex numbers of absolute value 1 are ratios of vectors of equal length,
or what we have been calling angles:

|Y | = |X | ⇔ |Y ||X | = 1⇔ X−1Y = X̂, Y .

It follows immediately from the corresponding facts for angles that every
complex number may be written uniquely in the form X−1Y, where X is a given
non-zero vector, and that the non-zero complex numbers form an Abelian group
under multiplication. (See Figure 15.) Also, since

X−1Y +X−1Z = X−1(Y + Z),

the complex numbers form an Abelian group under addition. Thus the set C of
all ratios of vectors is a field.
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Fig. 15. Complex multiplication.

For X �= 0 we have

Y = αX + βXi⇔ X−1Y = α+ βi;

because X and xi are linearly independent, the pair of complex numbers, 1
and i, form a basis for C as a linear space over R. The coordinates, α and β, are
the so-called real and imaginary parts, �[ζ] and �[ζ], of the complex number
ζ = X−1Y .

Observe that
Y X−1 = α− βi

and
∣∣X−1Y

∣∣2 =
Y 2

X2
= X−1Y Y X−1 = α2 + β2.

Since these properties characterize the complex field, our terminology is appro-
priate.

Conjugation, X−1Y �→ Y X−1, is an automorphism of C that carries i to −i.

10 Area

If we define the (oriented) scale-free area of a polygon 〈A1, A2, . . . , Ak〉 to be the
quantity

m[A1, A2, . . . , Ak] := A1 ∧A2 +A2 ∧A3 + · · ·+ Ak ∧A1

whereA∧B := 1
2 (AB−BA), then we get a full theory of plane area, as expounded

in [4]. The main properties are that

– area is additive;
– area is translation-invariant;
– area of triangles is characterised, up to choice of scale, by three basic theo-

rems of Euclid.
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Note that area is vectorial (expressible in terms of vectors only), since

m[A,B,C] = (B −A) ∧ (C −A);

this is one point where the value of the distinction we make between points and
vectors is manifest.

The space of scale-free areas of polygons in the affine plane is one-
dimensional. What is new in the Euclidean context is that there is a natu-
ral choice of scale. Choose a point O and direction X . Let Y = Xi, O1 =
O +X , O2 = O + Y . Then:

m[O,O1, O2] = X ∧ Y =
1
2
(XY − Y X) = XY = i

and m[O,O1, O1 +O2, O2] = 2i. According to Fact 4 (of Section 2), the area of
the unit square should be 1. We therefore define the (oriented, scaled) area of a
polygon 〈A1, A2, . . . , Ak〉 to be the real number

µ[A1, A2, . . . , Ak] :=
1
2i
m[A1, A2, . . . , Ak]

For the area of a triangle 〈A,B,C〉 with V = B −A, W = C −A we have a
familiar formula:

µ[A,B,C] =
1
2i
V ∧W

=
1
2
|V |.|W |(V W −WV

2i|V |.|W | )

=
1
2
|V |.|W | sin V̂,W

=
1
2
base[A,B,C].height[A,B,C].

An arbitrary square with vertices A1, A2 = A1+X, A3 = A1+X+Xi, X4 =
A1 +Xi has area

µ[A1, A2, A3, A4] = µ[A1, A2, A3] + µ[A1, A3, A4]

=
1
2
�[X(X +Xi)] +

1
2
�[(X +Xi)(−X)]

= �[X2i]
= X2.

11 Affine Maps

Denote by P the set of all points, by L the (real) linear space spanned by P ,
and by V the set of all vectors (a proper linear subspace of L).
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A function f : P → P is called an affine map if it preserves lines and ratios
of distances along lines, or, equivalently, if

f [αA+ βB] = αf [A] + βf [B]

for all A,B ∈ P and α, β ∈ R with α+ β = 1. (Actually it is only necessary to
assume this for α and β both positive.)

An affine map preserves parallelism of lines since 〈A,B,C,D〉 is a parallelo-
gram if and only if 1

2 (A+ C) = 1
2 (B +D).

Any affine map f :P → P can be extended naturally to a linear function
f : L → L. To achieve this one must set

f [αA] = αf [A] for all α ∈ R, A ∈ P ,
and

f [B −A] = f [B]− f [A] for all A,B ∈ P .
Since every element of L can be shown to be either a unique multiple of a

unique point, αA, or a vector B −A, and since

B −A = C −D ⇒ 1
2 (A+ C) = 1

2 (B +D)
⇒ 1

2 (f [A] + f [C]) = 1
2 (f [B] + f [D])

⇒ f [B]− f [A] = f [C]− f [D],

this determines f on L in a well-defined fashion. Now for arbitrary points A
and B and real numbers α and β, one has, in the case where α+ β �= 0,

f [αA+ βB] = f [(α+ β)(
α

α + β
A+

β

α+ β
B)]

= (α+ β)f [
α

α+ β
A+

β

α+ β
B]

= αf [A] + βf [B],

and, in the case where α+ β = 0,

f [αA+ βB] = f [((α+ 1)A+ βB)−A]
= f [(α+ 1)A+ βB]− f [A]
= (α+ 1)f [A] + βf [B]− f [A]
= αf [A] + βf [B].

From this it follows easily that f is linear on L. In future we use the term
affine map for the unique extended map, f : L → L, and we call the restriction
f : V → V (which is also linear) its vector part.

Example. For every vector W there is a translation t : P → P given by

t[A] = A+W for every A ∈ P .
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This is an affine map since for α+ β = 1 we have

t[αA+ βB] = αA+ βB +W = α(A+W ) + β(B +W ) = αt[A] + βt[B]

and it leaves every vector X = B −A fixed, since

t[X ] = t[B]− t[A] = (B +W )− (A+W ) = X.

In a natural way the translations form a linear space isomorphic to V . ✷

Let f : P → P be affine. Since f

f [A+X ] = f [A] + f [X ],

is determined by its vector part together with its action on a single point A.
Moreover, writing

f [A+X ] = (A+ f [X ]) + (f [A]−A)
= (t ◦ g)(A+X),

we see that f is the composite with a translation f (by f [A] − A) of a map g,
given by

g[A+X ] = A+ f [X ] for X ∈ V ,
which is affine, since for α+ β = 1 and C,D ∈ P , we have

g[αC + βD] = g[A+ α(C −A) + β(D −A)]
= A+ f [α(C −A) + β(D −A)]
= A+ αf [C −A] + βf [D −A]
= α(A + f [C −A]) + β(A+ f [D −A])
= αg[C] + βg[D],

which has a fixed point, since
g[A] = A,

and which has the same vector part as f , since for X ∈ V

g[X ] = g[A+X ]− g[A] = g[A+X ]−A = f [X ].

This effectively reduces the analysis of affine maps to the consideration of linear
maps on vectors.

12 Similitudes

A function f : P → P is a similitude if it preserves ratios of distances, or,
equivalently, if there exists λ > 0 such that

(f [B]− f [A])2 = λ2(B −A)2
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for all points A and B. A similitude for which λ = 1 is called an isometry; thus
isometries preserve distances. Obviously translations are isometries.

Similitudes preserve lines, since a point C lies on the line segment between A
and B if and only if

|B −A| = |B − C|+ |C −A| ;
Thus similitudes are affine maps. A similitude f stretches each vectorX = B−A
by the factor λ :

f [X ]2 = (f [B]− f [A])2 = λ2(B −A)2 = λ2X2.

Example. There is a natural action of angles on vectors: for each angle Y Z,
where Y and Z are directions, define f : V → V by

f [X ] = XYZ

for every X ∈ V . Clearly f is linear. The affine map whose vector part is such
an f and which has a fixed point A is called the rotation about A through the
angle Y Z. Rotations are isometries since, using the Fact that angles commute,
we have

(XY Z)2 = (XY )(ZX)(Y Z) = (XY )(Y Z)(ZX) = X2.

In a natural way the rotations about A form a group which is isomorphic
with the group of angles. ✷

Let f be a similitude, as above. For arbitrary vectors X and Y we have

f [X ]2 + f [X ]f [Y ] + f [Y ]f [X ] + f [Y ]2 = (f [X ] + f [Y ])2

= λ2(X + Y )2

= λ2(X2 +XY + Y X + Y 2),

and hence

cos ̂f [X ], f [Y ] =
f [X ]f [Y ] + f [Y ]f [X ]

2 |f [X ]| |f [Y ]| = cos X̂, Y .

It follows that f preserves perpendicularity of vectors. Since, also f

sin2 ̂f [X ], f [Y ] = 1− cos2 ̂f [X ], f [Y ] = sin2 X̂, Y ,

multiplies areas (1
2 |X | |Y |

∣∣∣sin X̂, Y
∣∣∣) by the factor λ2. However, f may reverse

orientations.
Let X and Y be directions with XY = i, a positive right angle. From the

above we know that

f [X ]f [Y ] + f [Y ]f [X ] = λ2(XY + Y X)
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and either
f [X ]f [Y ]− f [Y ]f [X ] = λ2(XY − Y X)

or
f [X ]f [Y ]− f [Y ]f [X ] = λ2(Y X −XY ).

In the first case we must have

f [X ]f [Y ] = λ2XY,

and hence
̂f [X ], f [Y ] = X̂, Y ,

while in the second case we have

f [X ]f [Y ] = λ2Y X

and hence
̂f [X ], f [Y ] = Ŷ, X.

In the first case, f preserves all angles and we have what is called a direct
similitude; for every angle has the form XZ for some direction Z = αX + βY ,
and

f [X ]f [Z] = f [X ](αf [X ] + βf [Y ])
= αλ2X2 + βλ2XY

= λ2XZ.

Similarly, in the second case f reverses all angles and we have what is called
an indirect similitude.

Because

X−1Y =
|Y |
|X |X̂, Y ,

it must be the case that f carries triangles to similar triangles, preserving ori-
entation if direct and reversing orientation if indirect.

Let A be a point. Define g : P → P by

g[B] = A+
1
λ
(f [B]− f [A]),

for every point B. Clearly g is an isometry with fixed point A, and

f [B] = A+ λ(g[B]−A) + (f [A]−A)
= (t ◦ d ◦ g)[B]

for every point B, where t is translation by f [A] − A and d : P → P is the
similitude with fixed point A, given by

d[B] = A+ λ(B −A)

for every point B, and called a dilation. This effectively reduces the problem of
finding all similitudes to that of finding all isometries.
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13 Isometries

The action of a direct isometry f on vectors is completely determined by its
action on a single vector, since the identity

f [X ]f [Y ] = XY

entails that f carries each X ∈ V to

f [X ] = XY f [Y ]−1

where Y is some fixed non-zero vector. Indeed

Y f [Y ]−1 =
Y f [Y ]
f [Y ]2

=
Y f [Y ]
|Y | |f [Y ]|

is an angle, and so the direct isometries are identified as precisely the maps
obtained by composing a translation with a rotation.

Example. Consider an indirect isometry f which has a fixed non-zero vector Y ,
which we take, without loss of generality, to be a direction. Since f [X ]f [Y ] =
Y X, the action of f on vectors X is given by

f [X ] = Y Xf [Y ]−1 = Y XY.

If X = αY + βY i then

f [X ] = αY 3 + βY 2iY = αY − βY i.

If f has a fixed point A we call f the reflection in the line through A with
direction Y . Reflections are idempotent, since

f2[X ] = Y 2XY 2 = X,

and the product of the reflections in the lines through A with directions Y and Z
is the square of the rotation about A through the angle Y Z, since

Z(Y XY )Z = X(Y Z)(Y Z).

The natural induced action of reflections on angles is conjugation: reflection
in a line with direction Y carries the angle Y X into

(Y Y Y )(Y XY ) = XY. ✷

Every indirect isometry is determined by its action on a single direction Y ,
since, for every vector X ,

f [X ] = Y Xf [Y ]−1,

and is the composite of a translation, a reflection and a rotation, since

f [X ] = (Y XY )(Y −1f [Y ]−1) = (Y XY )(Y f [Y ]).

Every rotation is the composite of two reflections. To see this, let f be a
rotation through the angle Y Z, where Y and Z are directions. If U is the direction
of 1

2 (Y + Z) then Y U = UZ, and hence f [X ] = XY Z = (XY )(UY )U =
U(Y XY )U.
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14 Conclusion

The simplest concrete realisation of our formalism is as the ring generated by
the real numbers and elements O, X and Y , subject to the conditions that real
numbers commute with the other generators, X2 = 1, Y 2 = 1 and Y X = −XY ,
but otherwise free. It is straightforward to verify the axioms, with P = {O+αX+
βY : α ∈ R, β ∈ R}. Of course many elements have no geometric interpretation,
but our exposition shows that this is not a problem.We have shown how standard
notions of Euclidean plane geometry are realised, and indeed other notions, not
mentioned above, such as line vectors, are also realised.

Note that direct use of such a concrete realisation, rather than our axiomatic
approach, would allow coordinate-based proof of theorems, including those in-
volving points. However, a main point of the paper has been to suggest that it is
necessary — and possible — to move beyond a theorem-proving point of view if
we are to build more autonomous systems that internalize geometric knowledge
in a way that will satisfy the desiderata presented in our first paragraph. The
Euclid ring axiomatization supports direct algebraic reasoning with geometric
concepts.

In a Euclid ring, points, vectors and complex numbers are distinct geometric
entities, with rich interplay between them. Both the identification of points with
vectors (made in expositions of “vector geometry”) and with complex numbers
(made in expositions of “complex geometry”) are ungeometrical and obscure
those relationships; our treatment shows that these identifications are unnec-
essary. At the same time, the isomorphisms between P and A + V (for any
“origin” A), and between V and R+ iR, explain why those identifications work,
to the extent that they do.

It is not suggested that the approach to the Euclidean plane presented here
supercedes other approaches. On the contrary, the Euclid ring formalism provides
a context in which other approaches have their places. I conclude with some
remarks on connections with other approaches.

(a) Complex numbers. The Argand diagram was of great importance histor-
ically because it helped to make complex numbers respectable, and it remains
the way that we picture complex numbers. Nevertheless I want to suggest that
this picture is wrong in roughly the same sense that it is wrong to identify two
structures which are isomorphic but not naturally isomorphic. A drawing board
(physical plane) has no imaginary axis (or real axis, or origin, for that matter).
From a geometric point of view, complex numbers are not points but ratios of
vectors (or positive multiples of angles). Conjugation is not reflection of points in
the real axis but a map which carries each positive multiple of an angle onto the
same positive multiple of the inverse angle. Of course if we choose an origin O
and direction X , every point P is uniquely expressible in the form

P = O + αX + βXi,

and the map P �→ X−1(P − O) = α + βi is a bijection between points and
complex numbers, and there is an induced correspondence between reflection in
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the real axis and conjugation. Reversing the point of view, one may say that a
major advantage of the Euclid ring approach is that it enables one to deal with
angles algebraically in the same kind of way that we deal with vectors.

(c) Coordinates. People who use geometry, such as engineers and architects,
rarely need explicit coordinates. As with (a), application of Occam’s razor would
excise coordinates from geometry. Nevertheless coordinates are of interest, since
to date the most successful geometry theorem provers and systems for the cre-
ation and manipulation of geometric objects are based on coordinatisation. The
Euclid ring approach evidently supports resort to coordinates for proofs when
necessary. At the same time it is reasonable to hope that it may be feasible to
build geometric reasoning systems that can produce simple algebraic proofs like
those given in this paper. Current work of D. Wang [9] and others, including a
group lead by the author, may lead to such systems.

A point to be noted is that whereas the field of complex numbers, by virtue
of its algebraic completeness, plays a crucial if somewhat inexplicable role in the
coordinate-based proof methods for “real” Euclidean geometry, complex num-
bers appear naturally as actual geometric objects in the treatment presented in
this paper.

(c) Synthetic geometry. There is something very appealing about traditional
synthetic proofs and they may profitably be mixed with algebraic arguments. For
example after the result (proved here) that the angles at the base of an isosceles
triangle are equal, one can prove in rapid succession by synthetic arguments a
sequence of interesting theorems: that the angle subtended by a chord at the
centre of a circle is twice the angle at the circumference, that opposite angles of
a cyclic quadrilateral are supplementary, that the product of the distance from
a point to the points of interSection with a given circle of a line through the
point is constant. One might even choose to carry this approach to the limit
by proving as rapidly as possible a set of synthetic axioms (as theorems) and
thereafter using only synthetic methods. As we have shown, the Euclid ring also
provides a natural setting in which to introduce transformation geometry.

(d) Inner and outer products. Of course X �→ |X | is a Euclidean norm on V
and by setting

X.Y = �[XY ] =
1
2
(|X + Y |2 − |X |2 − |Y |2)

we obtain the associated inner product. Moreover by setting

X ∧ Y = i �[XY ] =
1
2
(XY − Y X)

(and X ∧ Y ∧Z ≡ 0) we get an exterior product of vectors. Many of our results
may be expressed in terms of these products, but this usually amounts to split-
ting complex numbers into real and imaginary parts, something which is often
best avoided.

This paper is a slightly updated version of [3]. It aspires to bring to bear upon
Euclidean geometry with points and numbers as the fundamental objects, the
power of ideas which were implicit already in the work of Grassmann, Hamilton



110 Desmond Fearnley-Sander

and Clifford, and have subsequently been extended by many authors (see, for
example, [5]). The modern theory of Clifford algebras was established by Elie
Cartan, Hermann Weyl, Claude Chevalley, Marcel Riesz and others, and thor-
ough expositions may be found, for example, in the books [7], [8] and [6]. The
dependence of the paper on the work of these authors is acknowledged.

The material presented in this paper is very simple, even trivial. But that is
precisely the point: if an automatic reasoning system is to be able to “do” plane
Euclidean geometry, and to call upon this ability when needed, it should use a
simple formalism that is amenable to computation and that, at the same time,
is sufficiently expressive to fully capture the riches of the world that Euclid gave
us. That is what the Euclid ring approach attempts to do.
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A Clifford Algebraic Method for Geometric

Reasoning

Haiquan Yang, Shugong Zhang, and Guochen Feng

Institute of Mathematics, Jilin University, Changchun 130012, PRC

Abstract. In this paper a method for mechanical theorem proving in ge-
ometries is proposed. We first discuss how to describe geometric objects
and geometric relations in 2D and/or 3D Euclidean space with Clifford
algebraic expression. Then we present some rules to simplify Clifford al-
gebraic polynomials to the so-called final Clifford algebraic polynomials.
The key step for proving the theorems is to check if a Clifford algebraic
expression can be simplified to zero. With the help of introducing coordi-
nates, we can prove mechanically most of the geometric theorems about
lines, conics, planes and so on in plane and/or solid geometry. The proofs
produced by machine with our method are readable and geometrically
interpretable. Finally, some interesting examples are given.

1 Introduction

It has been a hard work left since the time of Euclid to find a mechanical method
to prove difficult geometric theorems to make learning and teaching geometry
easier. In history many mathematicians, including Leibniz, Hilbert and others,
have tried their best in this field. Modern computer technology and science make
it possible to produce proofs of geometric theorems mechanically. Since nineteen
fifties, lots of scholars have studied mechanical theorem proving in geometries,
but they did not make much progress in proving relatively difficult geometric
theorems until nineteen seventies.

In 1978, a breakthrough came with the work of Wu [6], who introduced an
algebraic method which, for the first time, can be used to prove hundreds of
geometric theorems mechanically. With Wu’s method, many difficult theorems
whose traditional proofs need an enormous amount of human intelligence can be
proved on computer within seconds.

Motivated by Wu’s method, Chou, Gao and Zhang developed an area method
that can produce short and readable proofs for hundreds of geometric statements
in plane and/or solid geometry [1]. This is another great progress in this field.

In 1997, combining Clifford algebraic expression with Wu’s method, Li and
Cheng proposed a complete method for mechanical theorem proving in plane
geometry; this brought people new enlightenment [5]. Soon after this, Fèvre
and Wang gave a method for mechanical theorem proving based on rewriting
rules for Clifford algebraic expressions [2]. Recently, Boy de la Tour and others
have proposed a rewriting system for simplifying Clifford algebraic expressions in

X.-S. Gao, D. Wang, and L. Yang (Eds.): ADG’98, LNAI 1669, pp. 111–129, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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3D and investigated its theoretical properties [3]. Having some similarity to their
work, ours presented here emphasizes various applications to reasoning problems
in plan and solid geometry.

In the practice of theorem proving, the first task is to represent geometric
objects and relations with Clifford algebraic expressions. Then simplifying these
expressions to simpler forms with certain rules. To prove a theorem, one needs
to simplify the conclusion expression with the condition expressions and the
simplifying rules to see if the final expression is zero. With this method we
have proved, besides theorems about points, lines, planes and so on in plane
and solid geometry, many theorems about conics which were never considered
in mechanical theorem proving before.

In addition, by changing the metric, this method can be used to prove theo-
rems in non-Euclidean geometry.

2 Preliminaries

Let V be a vector space over the field R of real numbers and Q : V → R a
quadratic form. The quotient of the tensor algebra ⊗(V ) by the two-sided ideal
generated by the elements of the form x⊗x−Q(x),x ∈ V , is called the Clifford
algebra of (V,Q), denoted by G(V,Q) or G(V ). The product in G(V ), denoted
by juxtaposition, is called the geometric product. Induced by ⊗(V ), G(V ) is a
graded associative algebra.

Let 0 �= A ∈ G(V ). A is called a r-blade if A = a1a2 . . .ar, where

ai ∈ V, aiaj + ajai = 0, ∀i �= j.

The symbols Ar, Bs, . . . , represent a r-blade A, a s-blade B, and so on. All r-
blades generate linearly a vector subspace Gr(V ) of G(V ), whose elements are
called r-vectors. We have G(V ) = ⊕∞

i=0Gi(V ), where G0(V ) = R, G1(V ) = V .
So

∀A ∈ G(V ), A =
∞∑

i=0

〈A〉i,

where 〈A〉i ∈ Gi(V ) is the i-vector component.
When r, s �= 0, 〈ArBs〉|r−s| is called the inner product of Ar, Bs, denoted

by Ar ·Bs, 〈ArBs〉r+s is called the outer product of Ar, Bs, denoted by Ar ∧Bs;
otherwise we define

A0 · Bs = Bs ·A0 = 0, A0 ∧Bs = Bs ∧A0 = A0Bs.

The definitions can be extended linearly to G(V )× G(V ).

The commutator product of A,B ∈ G(V ) is A×B =
1
2
(AB −BA).

The reverse of A ∈ G(V ) is denoted by A†; in which † is a linear operator
satisfying A†

r = arar−1 . . .a1 for any Ar = a1a2 . . .ar, where ai ∈ V .
The scalar product of A,B ∈ G(V ) is A ∗ B = 〈AB〉0, the magnitude of

A ∈ G(V ) is defined as |A| = √|A† ∗A|.
See [4] for details.
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3 Plane Geometry

In this section, we consider the Clifford algebra in the Euclidean plane E2. The
oriented segment from point A to point B, denoted by AB, is called a vector,
its magnitude is denoted by |AB|. We denote by I2 the unit 2-vector, and hence
G(I2) = G(E2), G1(I2) = E2. Denote eI2θ = cos θ + I2 sin θ, ∀θ ∈ R.

Let line(A,a) denote the line passing through the point A and parallel to
the vector a; circle1(O,P ) denote the circle with the point O as its center
and passing through the point P ; circle2(O, r) denote the circle with center O
and radius r; parabola(O,F ) denote the parabola with vertex O and focus F ;
ellipse(O,F, a) denote the ellipse with center O, focus F and major semi-axis a;
hyperbola(O,F, a) denote the hyperbola with center O, focus F and real semi-
axis a;

3.1 Description of the Method

In this section, we restrict ourselves to constructive statements in plane geometry.
By a geometric object we mean a point, a scalar, a vector, a multi-

vector, . . . , in the plane. A construction means a way to introduce some new
geometric objects based on some geometric objects introduced in advance.

Generally, a geometric statement is composed of a sequence of constructions
and a conclusion that can be written as a Clifford algebraic expression of some
geometric objects.

Definition 1. A construction is one of the following operations:
C0) (point(X)) Take an arbitrary point X on the plane.
C1) (on line(X,A,a, t)) Take an arbitrary point X on line(A,a).
C2) (on cir1(X,O, P, θ)) Take an arbitrary point X on circle1(O,P ).
C3) (inter line line(X,A,a, B, b)) Point X is the intersection of line(A,a)

and line(B, b).
C4) (inter line cir1(X,A,a, O)) Point X is the intersection of line(A,a) and

circle1(O,A) other than point A.
C4

′) (inter line cir2(X,A,a, O, r,X ′), where X ′ is optional) Points X and X ′

are the intersections of line(A,a) and circle2(O, r).
C5) (inter cir2 cir2(X,O1, r1, O2, r2, X

′), where X ′ is optional) Points X and
X ′ are the intersections of circle2(O1, r1) and circle2(O2, r2).

C6) (on para(X,O, F, p, t) where p = |OF |) Take an arbitrary point X on
parabola(O,F ).

C7) (para tan(τ,O, F, p, P ), where p = |OF |) Vector τ is the tangent vector
at point P to parabola(O,F ), where point P is on the parabola.

C8) (tan para(X,O, F, p, σ), where p = |OF |) Point X is on parabola(O,F ),
whose tangent vector is σ.

C9) (inter para line(X,O, F, p,B,a), where p = |OF |) Point X is the in-
tersection of line(B,a) and parabola(O,F ) other than point B, where
point B is on the parabola.
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C10) (inter para linepassfocus(X,O, F, p,a, X ′), where p = |OF |, X ′ is op-
tional) Points X and X ′ are the intersections of line(F,a) and parabola
(O,F ).

C11) (on elli(X,O, F, a, b, c, θ), where c = |OF |, b = √a2 − c2) Take an arbi-
trary point X on ellipse(O,F, a).

C12) (elli tan(τ,O, F, a, b, c, P ), where c = |OF |, b =
√
a2 − c2) Vector τ is

the tangent vector at point P to ellipse(O,F, a), where point P is on the
ellipse.

C13) (tan elli(X,O, F, a, b, c, σ,X ′), where c = |OF |, b = √a2 − c2, X ′ is op-
tional) Points X and X ′ are on ellipse(O,F, a), whose tangent vector is
σ.

C14) (inter elli line(X,O, F, a, b, c, P, σ), where c = |OF |, b =
√
a2 − c2)

Point X is the intersection of line(P, σ) and ellipse(O,F, a) other than
point P , where point P is on the ellipse.

C15) (on hyper(X,O, F, a, b, c, t), where c = |OF |, b = √c2 − a2) Take an ar-
bitrary point X on hyperbola(O,F, a).

C16) (hyper tan(τ,O, F, a, b, c, P ), where c = |OF |, b = √c2 − a2) Vector τ is
the tangent vector at point P to hyperbola(O,F, a), where point P is on
the hyperbola.

C17) (tan hyper(X,O, F, a, b, c, σ,X ′), where c = |OF |, b =
√
c2 − a2, X ′ is

optional) Points X and X ′ are on hyperbola(O,F, a), whose tangent
vector is σ.

C18) (inter hyper line(X,O, F, a, b, c, P, σ), where c = |OF |, b =
√
a2 − c2)

Point X is the intersection of line(P, σ) and hyperbola(O,F, a) other
than point P , where point P is on the hyperbola.
The points X, X ′ or the vector τ in each of the above constructions are
said to be introduced by that construction.

Definition 2. A constructive statement is represented by a list

S = (c1, c2, . . . , ck, G),

where

– ci, i = 1, . . . , k, are constructions such that the geometric objects introduced
by each ci must be different from the geometric objects introduced by cj, j =
1, . . . , i−1, and the other geometric objects occurring in ci must be introduced
before; and

– G = (E1, E2) where E1 and E2 are the Clifford algebraic expressions of
some geometric objects introduced by the constructions ci and E1 = E2 is
the conclusion of S.

By the propositions in [8], the geometric objects introduced by the con-
structions can be represented by a Clifford algebraic expression of the known
geometric objects. For testing whether a constructive statement is true or not,
we simply, from the last construction ck to the first one c1, substitute the ex-
pressions of the introduced geometric objects into the conclusion’s expression,
and then simplify the result.
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3.2 Algorithm and Implementation of G(E2)

A Clifford algebraic expression is called basic if it is a constant symbol denoting
some real number, a constant symbol denoting some vector, or the
unit 2-vector I2. In particular, a basic vector, denoted by a, b, c, . . ., is a constant
symbol denoting some vector; a basic scalar, denoted by α, β, λ, . . ., is a constant
symbol denoting some real number.

Let A,B,C, . . . , x, y, z denote the Clifford algebraic expressions which are
composted of basic scalars, basic vectors and I2 through Clifford algebraic op-
erations.

Among Clifford algebraic operations, the most useful one is the computation
of the grade of a Clifford algebraic element. So we have the following algorithm.

Algorithm 1. Compute the grade of x if x is a homogeneous multivector, oth-
erwise returns an error message.

Cgrade:=proc(x)
if x is a basic vector then RETURN(1)
elif x = I2 then RETURN(2)
elif x = A · B then RETURN(|Cgrade(A)−Cgrade(B)|)
elif x = A ∧B then RETURN(Cgrade(A)+Cgrade(B))
elif x = A+ B then

if Cgrade(A)=Cgrade(B) then RETURN(Cgrade(A))
else ERROR
fi

elif x = λA then RETURN(Cgrade(A))
elif x = A−1 then RETURN(Cgrade(A))
elif x = AB then ERROR
else RETURN(0)
fi

end
where A,B are not scalars.

We consider the inner and outer products as the basic products and will
express other products with them. So we have the following algorithms.

Algorithm 2. Compute the inverse of x if it exists, otherwise return an error
message.

Inverse:=proc(x)

if Cgrade(x) = 0 then RETURN(
1
x
)

elif Cgrade(x) = 1 then RETURN(
x

x · x)
elif Cgrade(x) = 2 then RETURN(

I2
x · I2 )

else ERROR
fi

end.
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Clearly, the algorithm Inverse cannot deal with all reversible elements, but
it is sufficient for our purpose.

Algorithm 3. Represent a geometric product with inner and outer products.
Eval g:=proc(x, y)

if x =
∑r

i=1 Ai, y =
∑s

j=1 Bj and (r > 1 or s > 1)
then RETURN (

∑r
i=1

∑s
j=1 Eval g(Ai, Bj))

elif x = AB then RETURN(Eval g(Eval g(A,B), y))
elif y = AB then RETURN(Eval g(x, Eval g(A,B)))
elif Cgrade(x) = 0 or Cgrade(y) = 0 then RETURN(x ∗ y)
elif Cgrade(x) = 1 then

if Cgrade(y) = 1 then RETURN(x · y + x ∧ y)
else RETURN(x · y)
fi

else RETURN(x · y)
fi

end
where x ∗ y denotes the scalar multiplication, and A,B are not scalars.

Clearly, if the three conditions at the beginning of the algorithm are not sat-
isfied, then both x and y must be homogeneous multivectors, and the algorithm
Cgrade can compute their grades. So the algorithm Eval g is correct.

With the above algorithms, we can represent various products that appear
in our applications with inner and outer products.

A Clifford algebraic expression is called a Clifford algebraic polynomial if it
does not contain any inverse of non-scalars and any denominators involving non-
scalars. What follows will mainly deals with the Clifford algebraic polynomials.

We will use the following five kinds of rules and formulas
Rules 1: Both inner and outer product are bilinear.
Rules 2: For arbitrary scalar λ ∈ R and arbitrary multivector A ∈ G(E2):

λ ∧A = A ∧ λ = λA, λ · A = A · λ = 0.

Rules 3: For arbitrary r-vector Ar and s-vector Bs:
Ar · Bs = (−1)r(s−1)Bs · Ar, if r ≤ s.
Ar ∧Bs = (−1)rsBs ∧Ar.

Rules 4: For arbitrary vectors a, b ∈ E2:

(1) a ∧ (b · I2) = (a · b)I2
(2) a · (b · I2) = (a ∧ b) · I2
(3) (a · I2) · I2 = −a
(4) ((a ∧ b) · I2)I2 = −(a ∧ b)
(5) I2 · I2 = −1

Rules 5: For any vectors a, b, c,d ∈ E2:

a · (b ∧ c) = (a · b)c− (a · c)b
(a ∧ b) · (c ∧ d) = (b · c)(a · d)− (b · d)(a · c)
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Algorithm 4. Expand a Clifford algebraic polynomial x by Rules 1, Rules 2,
and Rules 3.

Eval i w1:=proc(x)
step1: expand x by bilinearity to get a sum, each term of

the sum does not contain any addition and subtraction.
step2: process the scalar factors in each term by Rules 2.
step3: reorder the factors in each term by Rules 3.

end.

A Clifford algebraic polynomial is called expanded if it has been processed by
Eval i w1. In the sequel, we will assume that the algorithm Eval i w1 is called
automatically when it is required.

We now consider the forms of the terms in an expanded Clifford algebraic
polynomial.
Class 1: the basic scalars α, β, . . . , the basic vectors a, b, c,d, . . . , and the unit

2-vector I2.
Class 2: the elements which are obtained by taking inner or outer product with

factors in Class 1 once. For examples, the scalars a ·b, c ·d, the vectors
a · I2, b · I2, the 2-vectors a ∧ b, c ∧ d,.

Class 3: the elements which are obtained by taking inner or outer product
with factors in Class 1 or Class 2 once. All of these elements can be
simplified to a sum by Rules 4 and Rules 5, the new form occurring
in these terms is the scalar (a ∧ b) · I2.

No other new forms will be produced by this processing. So the forms of
Clifford algebraic terms are

vectors: a, b, c, d, . . . . . . ; a · I2, b · I2, c · I2, d · I2, . . . . . .
scalars: a · b, c · d, . . . ; (a ∧ b) · I2, (c ∧ d) · I2, . . . ; α, β, . . .

2-vectors: I2; a ∧ b, c ∧ d, . . . . . .

and an expanded Clifford algebraic polynomial is a sum of products of such
elements and the scalars.

From the above, there are five forms of terms in an expanded Clifford alge-
braic polynomial

A, AI2, A(a ∧ b), Aa, A(a · I2),
where

A = α1 . . . αi(a1 · b1) . . . (aj · bj)((c1 ∧ d1) · I2) . . . ((ck ∧ dk) · I2).
Rules 5′:

((a ∧ b) · I2)((c ∧ d) · I2) = (b · d)(a · c)− (b · c)(a · d)
((a ∧ b) · I2)(c · I2) = (b · c)a− (a · c)b

((a ∧ b) · I2)c = (a · c)(b · I2)− (b · c)(a · I2)
((a ∧ b) · I2)(c ∧ d) = (b · c)(a · d)I2 − (b · d)(a · c)I2

((a ∧ b) · I2)I2 = −(a ∧ b)
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With the above rules, we can simplify a Clifford algebraic polynomials to a sum
of the following six forms

S1: α1 . . . αi(a1 · b1) . . . (aj · bj)
S2: α1 . . . αi(a1 · b1) . . . (aj · bj)((c ∧ d) · I2)
S3: α1 . . . αi(a1 · b1) . . . (aj · bj)I2
S4: α1 . . . αi(a1 · b1) . . . (aj · bj)(c ∧ d)
S5: α1 . . . αi(a1 · b1) . . . (aj · bj)c
S6: α1 . . . αi(a1 · b1) . . . (aj · bj)(c · I2)

where α1, . . . αi are basic scalars, a1, . . .aj , b1 . . . bj , c,d are basic vectors.

Definition 3. The forms S1, S2, . . ., S6 will be called final forms. A Clifford
algebraic polynomial is called a final Clifford algebraic polynomial if its terms
are all final forms.

Theorem 1. There is an algorithm to simplify a Clifford algebraic polynomial
in G(I2) to a final Clifford algebraic polynomial.
Algorithm 5. Simplify an expanded Clifford algebraic polynomial x by Rules 4
and Rules 5′ to a final Clifford algebraic polynomial.

Eval i w2:=proc(x)
step1: Let the terms and/or the factors with grades greater

than 2 vanish.
step2: Simplify the 2-vectors in x which are not I2 by formula

u = −(u · I2)I2, that is in the reverse order of rule (4)
in Rules 4.

step3: Simplify x by other rules in Rules 4.
step4: Simplify x by Rules 5′. x will be a final polynomial.

end.

3.3 Algorithm and Implementation of Prover

We first give Maple procedures for constructions. Each construction will return
a list that is composed of the introduced geometric objects and their Clifford
algebraic expressions proposed by the propositions in [8].

Examples. Procedure on para(X,O, F, p, t) returns

[OX,
OF

p
(
t2

4p
+ tI2)].

Procedure para tan(τ,O, F, p, P ) returns

[τ,
OF

p
(− (OF ∧OP )I2

2p2
+ I2)].

Procedure inter para linepassfocus(X,O, F, p,a) returns

[OX,OF − 2p2

p|a|+OF · aa];
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Procedure inter para linepassfocus(X,O, F, p,a, X ′) returns

[OX,OF − 2p2

p|a|+OF · aa],

[OX ′, OF +
2p2

p|a| −OF · aa].

Let L be a list returned by a construction, y a Clifford algebraic expression.
The Maple procedure Eliminate(L, y) will substitute L[2] for L[1] in y and return
the simplified result, where L[1] and L[2] are the first and the second element of
the list L respectively.

Let S = (c1, c2, . . . , ck, G) be a constructive statement, (list1, list2, . . ., listr)
the sequence of lists returned by the constructions (c1, c2, . . . , ck), y a Clifford al-
gebraic expression about the points and vectors introduced by the constructions
(c1, c2, . . . , ck). Then y can be simplified by the following algorithm.

Algorithm 6. Simplify y by list1, list2, . . ., listr.
PreProver:=proc(list1, list2, . . ., listr, y)

for i from r by −1 to 1 do
y := Eliminate(listi, y);
simplify y by Eval i w1 and Eval i w2;

od
RETURN(y)

end.

In the implementation of our program, we use a Maple procedure PreDeal
to reduce the computing time and to shorten the proof of geometric theorems.

Algorithm 7. Do some pretreatment of list1, list2, . . ., listr.
PreDeal:=proc(list1, list2,. . .,listr)

simplify list1[2] by Eval i w1 and Eval i w2;
for k from 2 to r do

y := PreProver(list1,. . ., listk−1, listk[2]);
listk:=[listk[1], y]

od
end.

From the above, we have the following Prover.

Algorithm 8. Test whether a constructive statement

S = (c1, c2, . . . , ck, (E,F ))

is true or not, and print the proof for S. Let (list1, list2, . . ., listr) be the lists
returned by the constructions (c1, c2, . . . , ck).

Prover:=proc(list1, list2,. . ., listr, E,F)
PreDeal(list1, list2,. . .,listr);
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for i to r do print ‘‘listi[1]=listi[2])’’ od;
E:= PreProver(list1, list2, . . ., listr, E);

and print the steps;
F:= PreProver(list1, list2, . . ., listr, F);

and print the steps;
if E = F then RETURN(‘True’)
else

y:=Eval Normal(E − F); and print ‘‘y = E − F’’
if y = 0 then RETURN(‘True’)
else RETURN(‘False’)
fi

fi
end.

In this algorithm, E = F means that E and F are identical expressions, y = 0
means y and 0 are identical expressions too; and the procedure Eval normal()
normalizes the final Clifford algebraic expression by introducing coordinates. In
fact, Eval normal() is never used in all examples we met, even those cannot be
implemented by our program.

Theorem 2. Algorithm Prover is correct.

Proof. Obviously, before the first if sentence is called, the expressions E and F
will only involve free variables. So the statement S is true if and only if E
equals F , or E − F equals 0.

If E and F are not identical expressions in form, we compute y, the normal
form of E − F w.r.t. the introduced coordinates. Since normal form is unique,
E − F equals 0 if and only if y = 0.

3.4 Some Examples

In this subsection, we give some examples to illustrate our general method. See [7]
for more examples.

Let O be the origin, we denote vector OF , OA . . . by F ,A . . . . respectively
in the proofs for the geometric statements. Our program will use the following
procedures.

Procedure para const(O,F, p) returns list [p, |OF |].
Procedure elli const(O,F, a, b, c) returns [c, |OF |], [b,

√
a2 − c2].

Procedure hyper const(O,F, a, b, c) returns [c, |OF |], [b,
√
c2 − a2].

Procedure hyper sym(τ1, O, F, a, b, c, τ2) returns [τ1, aOF + bOFI2], [τ2, aOF
−bOFI2]. They are the asymptotic vectors of the hyperbola(O,F,A), and τ2 is
optional.

Example 1. In geometrical optics, the light beams parallel to the main axis of a
parabola will focus when they are reflected by the parabola.

This example can be described in the following constructive way.
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FO

P

Fig. 1

Constructions:
point(O,F );
para const(O,F, p);
on para(P,O, F, p, t);
para tan(e1, O, F, p, P ).

Conclusion:

OF ∧ e1

OF · e1

=
e1 ∧ FP
e1 · FP

.

Our program prints the following.
PreDeal:

p =
√
F · F

P =
t
(
tF + 4F · I2

√
F · F

)

4F · F
e1 =

2F · I2
√
F · F + tF

2F · F
Proof:

−I2 · (F ∧ e1)I2
F · e1

e1=
2
√
F · FI2
t

−I2 · (e1 ∧ FP )I2
e1 · FP

s= −
(
I2 · (F ∧ e1) + I2 · (e1 ∧ P )

)
I2

−F · e1 + e1 · P
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e1=

(
−2 (

F · F )2
+ 2F · PF · F + tI2 · (F ∧ P )

√
F · F

)
I2

t
(
F · F )3/2

+ 2 I2 · (F ∧ P )F · F − tF · P
√
F · F

P=
2
√
F · FI2
t

So
(I2 · (e1 ∧ F ))I2

e1 · F
+

(I2 · (e1 ∧ PF ))I2
e1 · PF

= 0

Example 2. In geometrical optics, the light beams from a focus of an ellipse pass
through the other focus when they are reflected by the ellipse.

FF1

P

Fig. 2

This example can be described in the following constructive way.
Constructions:

points(O,F );
elli const(O,F, a, b, c);
on elli(P,O, F, a, b, c, t1);
elli tan(e1, O, F, a, b, c, P );
on line(F1, O,OF ,−1).

Conclusion:

FP ∧ e1

FP · e1

=
e1 ∧ PF1

e1 · PF1

.

Our program prints the following.
PreDeal:

P =
a cos(t1)F + b sin(t1)(F · I2)

c

e1 = −
(F · F ) (−(F · I2) cos(t1)b+ a sin(t1)F

)

c3

F1 = −F
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Proof:

(I2 · (e1 ∧ FP ))I2
e1 · FP

s= −
(
I2 · (e1 ∧ F )− I2 · (e1 ∧ P )

)
I2

−e1 · F + e1 · P
e1=

(−(F · F ) cos(t1)b+ cos(t1)b(P · F ) + a sin(t1)((P ∧ F ) · I2)
)
I2

(F · F )a sin(t1) + cos(t1)b((P ∧ F ) · I2)− a sin(t1)(P · F )
P= −b

(
cos(t1)c− cos(t1)2a− a sin(t1)2

)
I2

sin(t1) (ac+ cos(t1)b2 − a2 cos(t1))
s= − bI2 (cos(t1)c− a)

sin(t1) (ac+ cos(t1)b2 − a2 cos(t1))
(I2 · (F1P ∧ e1))I2

F1P · e1

s=

(−I2 · (e1 ∧ F1) + I2 · (e1 ∧ P )
)
I2

e1 · F1 − e1 · P
F1= −

(
I2 · (e1 ∧ F ) + I2 · (e1 ∧ P )

)
I2

e1 · F + e1 · P
e1=

(
(F · F ) cos(t1)b + cos(t1)b(P · F ) + a sin(t1)((P ∧ F ) · I2)

)
I2

(F · F )a sin(t1)− cos(t1)b((P ∧ F ) · I2) + a sin(t1)(P · F )
P=

b
(
cos(t1)c+ cos(t1)2a+ a sin(t1)2

)
I2

sin(t1) (ac− cos(t1)b2 + a2 cos(t1))
s=

bI2 (cos(t1)c+ a)
sin(t1) (ac− cos(t1)b2 + a2 cos(t1))

So

(I2 · (e1 ∧ FP ))I2
e1 · FP

− (I2 · (F1P ∧ e1))I2
F1P · e1

=
2 bI2 cos(t1)a

(
c2 + b2 − a2

)

sin(t1) (−a2c2 + cos(t1)2b4 − 2 cos(t1)2b2a2 + a4 cos(t1)2)

Noticed that

b =
√
a2 − c2

We have

2 bI2 cos(t1)a
(
c2 + b2 − a2

)

sin(t1) (−a2c2 + cos(t1)2b4 − 2 cos(t1)2b2a2 + a4 cos(t1)2)
b= 0

4 Solid Geometry

In this section, we consider the Clifford algebra in 3-dimensional Euclidean
space E3. Let I3 denote the unit 3-vector, G(I3) = G(E3), G1(I2) = E3 and
G2(I3) = G2(E3).
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Suppose O is a point in space, u ∈ G2(I3), the plane with direction u and
passing through the point O is defined as

plane(O, u) = {A ∈ E3|OA ∧ u = 0}.

the normal vector of this plane is −uI3.

4.1 Description of the Method

Similar to the situation in plane geometry, we consider the constructive state-
ments about solid geometry.

Definition 4. A construction in E3 is one of the following operations
S0) (point(X)) Take an arbitrary point X in the space.
S1) (on plane(X,A,a, t1, b, t2)) Take an arbitrary point X on plane(A,a∧b).
S2) (inter line line(X,A,a, B, b)) Point X is the intersection of line(A,a)

and line(B, b), where AB ∧ a ∧ b = 0.
S3) (inter line plane(X,A,a, B, u)) Point X is the intersection of line(A,a)

and plane(B, u).
S4) (inter plane plane plane(X,A, u1, B, u2, C, u3)) Point X is the intersec-

tion of plane(A, u1), plane(B, u2) and plane(C, u3).
S5) (on line(X,A,a, t)) Point X is on the line(A,a).

In each case of the above, a point X in the construction is said to be
introduced by that construction.

Definition 5. A constructive statement in solid geometry is represented by a
list

S = (s1, s2, . . . , sk, G),

where

– si, i = 1, . . . , k, are constructions in which the geometric objects introduced
by each si must be different from the geometric objects introduced by sj, j =
1, . . . , i − 1, and other geometric objects occurring in si must be introduced
before; and

– G = (E1, E2) where E1 and E2 are the Clifford algebraic expressions of
some geometric objects introduced by the constructions si and E1 = E2 is
the conclusion of S.

By the propositions in [8], the geometric objects introduced by the con-
structions in E3 can be represented by a Clifford algebraic expression of known
geometric objects. To test whether a constructive statement is true or not, we
simply, from the last construction sk to the first s1, substitute the expressions of
the introduced geometric objects into the conclusion’s expression, and simplify
the result.
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4.2 Algorithm and Its Implementation in G(E3)

We only consider the simplification of Clifford algebraic polynomials: Clifford
algebraic expressions which contain no inverse of non-scalars and no denominator
involving non-scalars.

In solid geometry, we have to consider the commutator product on two 2-
vectors. However, the commutator product can also be expressed with the inner
and outer products since

u1 × u2 = −(u1 · I3) ∧ (u2 · I3), ∀u1, u2 ∈ G2(E2).

It is clear that Rules 1, Rules 2 and Rules 3 in plane geometry and the algo-
rithm Eval i w1() are valid in solid geometry too. A Clifford algebraic polynomial
is called expanded if it has been processed by algorithm Eval i w1.

We will use the following rules and formulas.
SRules 1: (A ∧B) ∧ C = A ∧ (B ∧ C) = A ∧B ∧C

Ar · (Bs · Ct) = (Ar ∧Bs) · Ct, where r + s ≤ t and r, s > 0.
SRules 2: For any vectors a, b, c ∈ E3, 2-vectors u, u1, u2, u3 ∈ G2(E3),

and 3-vector t:
(1) a ∧ (b · I3) = (a · b)I3,
(2) a ∧ (u · I3) = (a · u) · I3,
(3) u1 ∧ (u2 · I3) = (u1 · u2)I3,
(4) (a · I3) · I3 = −a,
(5) (u · I3) · I3 = −u,
(6) (t · I3)I3 = −t,
(7) I3 · I3 = −1.

SRules 3: For any vectors a, b, c,d ∈ E3:

a · (b ∧ c) = (a · b)c− (a · c)b
(a · b) ∧ (c · d) = a · (b · (c ∧ d))

SRules 4: For any vectors a, b, c,d, e,f ∈ E3:

a · (b ∧ c ∧ d) = (a · b)c ∧ d− (a · c)b ∧ d + (a · d)b ∧ c
(a ∧ b) · (c ∧ d ∧ e) = a · (b · (c ∧ d ∧ e))

(a ∧ b ∧ c) · (d ∧ e ∧ f ) = a · (b · (c · (d ∧ e ∧ f )))

We consider the forms of the terms in an expanded Clifford algebraic poly-
nomial.
Class 1: the basic scalars α, β, . . . , the basic vectors a, b, c,d, . . . , and the unit

3-vector I3.
Class 2: the elements which are obtained by taking inner or outer product of

the elements in Class 1 once. For examples, the scalars a · b, c · d, . . . ,
the 2-vectors a ∧ b, c ∧ d, . . . and a · I3, b · I3, . . ..

Class 3: the elements which are obtained by taking inner or outer product of
the elements in Class 1 or Class 2 once. Some of these elements can be
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simplified to a sum by SRules 1, SRules 2, SRules 3, and SRules 4, the
new forms appearing in their terms are the scalars (a∧ b∧ c) · I3, . . .,
the vectors (a ∧ b) · I3, . . ., and the 3-vectors a ∧ b ∧ c, . . ..

Class 4: the elements which are obtained by taking inner or outer product of
the elements in Class 1, Class 2 or Class 3 once. All of these elements
can be simplified to a sum by SRules 1, SRules 2, SRules 3, and
SRules 4, and no new form in their terms appears.

Therefore no other new forms can be produced by this processing, and the
forms of the Clifford terms are

vectors: a, b, c, d, . . . . . . ; (a ∧ b) · I3, (c ∧ d) · I3, . . . . . .
scalars: a · b, c · d, . . . ; (a ∧ b ∧ c) · I3, (d ∧ e ∧ f) · I3, . . . ; α, β, . . .

2-vectors: a ∧ b, c ∧ d, . . . . . . ;a · I3, b · I3, c · I3, . . . . . .
3-vectors: I3; a ∧ b ∧ c, d ∧ e ∧ f , . . . . . .

and an expanded Clifford algebraic polynomial is a sum of products of such
elements and scalars.

From the above, there are seven forms of the terms of an expanded Clifford
algebraic polynomial

A, Aa, A((a ∧ b) · I3), A(a ∧ b), A(a · I3), AI3, A(a ∧ b ∧ c),

where

A = α1 . . . αi(a1 · b1) . . . (aj · bj)((c1 ∧ d1 ∧ e1) · I3) . . . ((ck ∧ dk ∧ ek) · I3).

SRules 5:

((a ∧ b ∧ c) · I3)((d ∧ e ∧ f) · I3) = −(a ∧ b ∧ c) · (d ∧ e ∧ f)
((a ∧ b ∧ c) · I3)d = (d · (a ∧ b ∧ c)) · I3

((a ∧ b ∧ c) · I3)((d ∧ e) · I3) = −(a ∧ b ∧ c) · (d ∧ e)
((a ∧ b ∧ c) · I3)(d ∧ e) = ((a ∧ b ∧ c) · (d ∧ e) · I3
((a ∧ b ∧ c) · I3)(d · I3) = −(a ∧ b ∧ c) · d

((a ∧ b ∧ c) · I3)I3 = −(a ∧ b ∧ c)
((a ∧ b ∧ c) · I3)(d ∧ e ∧ f) = ((a ∧ b ∧ c) · (d ∧ e ∧ f))I3

With the above rules and SRules 4, we can simplify a Clifford algebraic polyno-
mial to a sum of the following eight forms

S1: α1 . . . αi(a1 · b1) . . . (aj · bj)
S2: α1 . . . αi(a1 · b1) . . . (aj · bj)((c ∧ d ∧ e) · I3)
S3: α1 . . . αi(a1 · b1) . . . (aj · bj)c
S4: α1 . . . αi(a1 · b1) . . . (aj · bj)((c ∧ d) · I3)
S5: α1 . . . αi(a1 · b1) . . . (aj · bj)(c ∧ d)
S6: α1 . . . αi(a1 · b1) . . . (aj · bj)(c · I3)
S7: α1 . . . αi(a1 · b1) . . . (aj · bj)I3
S8: α1 . . . αi(a1 · b1) . . . (aj · bj)(c ∧ d ∧ e)

where α1, . . . αi are basic scalars, a1, . . .aj , b1 . . . bj , c,d, e are basic vectors.
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Definition 6. The forms S1, S2, . . ., S8 will be called final forms in G(E3). A
Clifford algebraic polynomial in G(E3) is called a final Clifford algebraic polyno-
mial if its terms are all final forms.

Theorem 3. There is an algorithm to simplify a Clifford algebraic polynomial
in G(I3) to a final Clifford algebraic polynomial.
Algorithm 9. Simplify an expanded Clifford algebraic polynomial x by SRules 1,
SRules 2, . . ., SRules 5 to a final Clifford algebraic polynomial.

Eval i w2:=proc(x)
step1: Let the terms or the factors with grades greater

than 3 vanish.
step2: Simplify the 3-vectors in x which is not I3 by t = −(t ·

I3)I3, that is in the reverse order of rule (6) in
SRules 2.

step3: Simplify x by other rules in SRules 2, SRules 1 and
SRules 3.

step4: Simplify x by SRules 5.
step5: Simplify x by SRules 4. x will be a final polynomial.

end.

4.3 Algorithm and Implementation of Prover

This is very similar to the case of plane geometry, so we omitted the details.

4.4 Some Examples

Example 3 (Monge). The six planes passing through the midpoint of the edges
of a tetrahedron and perpendicular to the edges respectively opposite have a
point in common. This point is called the Monge point of the tetrahedron.

This example can be described in the following constructive way.
Constructions:

point(A,B,C,D);
on line(H,A,AB, 1/2);
on line(J,A,AC, 1/2);
on line(K,A,AD, 1/2);
on line(L,B,BC, 1/2);
on line(M,B,BD, 1/2);
on line(N,C,CD, 1/2);
inter plane plane plane(P,H,CD · I3, J, BD · I3, L,AD · I3).

Conclusions:

KP ·BC = 0; MP ·AC = 0; NP ·AB = 0.

Let point A be the origin. Then our program prints the following.
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PreDeal:

H =
B

2

J =
C

2

K =
D

2

LB =
B

2
− C

2

MB = −D

2
+

B

2

NC = −D

2
+

C

2

P = − ((B ∧ D) · I3)(B · C) − ((C ∧ D) · I3)(B · C) − ((C ∧ D) · I3)(B · D)

2 (I3 · (B ∧ C ∧ D))

− ((B ∧ D) · I3)(C · D) − ((B ∧ C) · I3)(B · D) − ((B ∧ C) · I3)(C · D)

2 (I3 · (B ∧ C ∧ D))

Proof:

BC ·KP
s= B ·K − C ·K −B · P + C · P
P= B ·K − C ·K − B ·D

2
+
C ·D
2

K= 0
C ·MP

s= −C ·M + C · P
P= −C ·M +

B · C
2

+
C ·D
2

M= 0
B ·NP

s= −B ·N +B · P
P= −B ·N +

B · C
2

+
B ·D
2

N= 0

This example is Example 4.92 in [1]; the proof produced by [1] is too long to
print.

Example 4. Let ABCD be a tetrahedron and G a point in space. The lines
passing through points A, B and C and parallel to line DG meet their opposite
face at P , Q, and R respectively. Try to find the condition for VGPQR = 3VABCD.

This example can be described in the following constructive way.
Constructions:

points(A,B,C,D,G);
inter line plane(P,A,DG,D,DB ∧DC);
inter line plane(Q,B,DG,D,DA ∧DC);
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inter line plane(R,C,DG,D,DA ∧DB).
Conclusion: Compute GP ∧GQ ∧GR.
Let point A be the origin. Then our program prints the following.
PreDeal:

P =

(
D − G

)
I3 · (D ∧ C ∧ B)

−I3 · (D ∧ G ∧ B)−I3 · (D ∧ C ∧ G)+I3 · (D ∧ C ∧ B)+I3 · (C ∧ G ∧ B)

Q = −−I3 · (D ∧ C ∧ B)D + I3 · (D ∧ C ∧ B)G − BI3 · (D ∧ C ∧ G)

I3 · (D ∧ C ∧ G)

R =
I3 · (D ∧ C ∧ B)D − I3 · (D ∧ C ∧ B)G + CI3 · (D ∧ G ∧ B)

I3 · (D ∧ G ∧ B)

Computation:

−I3 · (GP ∧ GQ ∧ GR)I3

=−
(
I3 ·(P ∧ G ∧ Q)+I3 ·(P ∧ R ∧ G)−I3 ·(R ∧ G ∧ Q)−I3 ·(P ∧ R ∧ Q)

)
I3

= I3

(
I3 · (C ∧ G ∧ B) + 3 I3 · (D ∧ C ∧ B)

)

So VGPQR = 3VABCD if and only if the points A,B,C,G are on the same
plane.

This is an extended version of a problem from the 1964 International Math-
ematical Olympiad.
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Abstract. Clifford algebra formalism has been used recently in combi-
nation with standard term-rewriting techniques for proving many non-
trivial geometric theorems. The key issue in this approach consists in
verifying whether two Clifford expressions are equal. This paper is con-
cerned with the generalization of the work to 3D geometric problems. A
rewriting system is proposed and its theoretical properties are investi-
gated. Some examples and potential applications are also presented.

1 Introduction

Proving geometric theorems has become an important activity with respect to
many domains such as geometry education, computer-aided design and computer
vision. Several methods have been very successful in proving many difficult the-
orems [3,10,12], and researchers are motivated to investigate the use of general
techniques of automated deduction for finding machine proofs.

Recently simple methods for proving geometric theorems have been devel-
oped based on Clifford algebra formalism [5,7,8,11,13]. Their main purpose is
to prove geometric theorems in a synthetic way, that is without using coor-
dinates. Traditionally synthetic geometry is only used at an elementary level
for performing simple computations. Analytic geometry has been much more
developed under the influence of physicists and engineers for which geometric
problems are reduced to algebraic ones. Actually the Clifford algebra formal-
ism provides an elegant way for solving geometric problems in a synthetic style
though it is possible to keep the advantages of the analytic point of view.

The expressive power of Clifford algebra allows to reduce a lot of problems
to the proof that a Clifford expression is equal to 0, or to the reduction of an ex-
pression to a normal form. This makes very easy understanding the methodology
for solving problems. However defining a normal form for Clifford expressions
and computing such a normal form is a non-trivial task. This has already been
achieved for the Euclidean plane [5,6] but the case of the Euclidean space ap-
pears more complex. As many simplification rules may be applied to Clifford
expressions, we have found convenient to use rewriting systems for simplifying
such expressions.

This paper investigates a rewriting system for systematically simplifying Clif-
ford algebraic expressions associated with problems in three-dimensional (3D)
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Euclidean space. We also study its theoretical properties (completeness, termi-
nation) and give some insights on the normalization problem explaining why
performing this task efficiently is so complex. Last, significant examples and
applications of our simplification method are presented.

2 A Synthetic Presentation

This section provides some background on the Clifford algebra used in this paper
and presents Clifford algebra from a synthetic point of view.

First, we define what is a Clifford algebra. Let K be a field of characteristic
not equal to 2, V a vector space of dimension n over the base field K and q a
quadratic form over V . Let

V+ = K⊕ (
n⊕

i=1

(
i⊗

j=1

V)),

where ⊕ is the direct sum and ⊗ is the tensor product. V+ is the tensor algebra
over V and its dimension is 2n. Let I(q) be the two-sided ideal of V+ generated
by the elements v ⊗ v − q(v) for every v ∈ V . Let C be the quotient of V+

by I(q). C is called the Clifford algebra associated to the quadratic form q.
This definition of Clifford algebra leads to introducing coordinates over a

basis of V and extending computations over V to C. This approach has been
developed for instance in [1].

Instead of using it, we propose to consider an axiomatization of Clifford alge-
bras specialized to some fixed geometry. For instance, an equational presentation
of such an axiomatization for dimension two has been given in [5]. The basic
idea is to consider an internal law · representing the unique bilinear symmetric
form associated with q. The outer product is represented by a binary associa-
tive operator ∧ and a unary dual operator ∼ is also introduced to strengthen
the expressive power. Last, the sum of two elements A and B of C is denoted
by A+B. There is also a well-defined product in Clifford algebra (the geometric
product) but we do not use it in this paper except for multiplying elements of
the basic field K with elements of C. In this case, it may be considered as the
extension to C of the external law of V .

More formally, we consider the Clifford algebra C of dimension 8 associated
with the 3D Euclidean space E . Points in E are represented by vectors in C. To
every element in C is associated a grade (intuitively, its “dimension”). Scalars are
elements of grade 0 and vectors are elements of grade 1. The outer product of k
vectors is called a k-vector and an element of C a Clifford number. A bivector
is the outer product of two vectors, and a trivector is the outer product of three
vectors or of a bivector and a vector. In our case, there is no quadrivector as we
are restricted to dimension 3. The rules for computing the grade of an arbitrary
expression are given in the next section. In what follows, an expression in C is
called a Clifford expression.
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Let a be a vector. The dual of a, denoted by a∼, is a bivector and may
be geometrically interpreted as an equivalence class of parallelograms in a plane
orthogonal to a. Reciprocally, any bivector may be interpreted as the equivalence
class of parallelograms of given direction, orientation and area. The dual of a
bivector is a vector. Last, any trivector is the dual of a scalar and reciprocally.
As the space of trivectors is a line, one can take II as a basis for trivectors and
define it such as II∼ = 1; II is called the unit pseudo-scalar.

Computation rules in C are derived from the definition of C and the op-
erations: sum +, inner product ·, outer product ∧ and (restricted) geometric
product ◦ (this symbol will often be omitted in expressions). These rules will
be given in detail in the next section (see system R). The basic step of apply-
ing Clifford algebra to geometric problems is to express geometric constructions
using Clifford expressions. Such constructions are used in Section 8.

The next section considers the problem of simplifying Clifford expressions
represented by ground terms and provides a set of simplification rules. Although
this set is not sufficient, its significance will appear when pseudo-coordinates are
introduced in Section 6.

3 Basic Simplification Rules

Let V be a finite set of elements of V . We consider Clifford expressions as first-
order terms built on constant symbols denoting some elements of K, constant
symbols from V, and the pseudo-scalar II by means of function symbols with one
argument (the dual operator) or two arguments (the sum, the geometric, inner
and outer products). In the sequel we will need to define rewriting systems by
means of conditional rules, and most conditions apply to the grades of the terms
involved. We will obviously provide a way to compute these grades, but efficiency
requires that the results of such computations be memorized, and hence to work
not exactly with first-order terms but with labeled trees, where each vertex is
labeled by a function symbol and a grade. However, in order to keep notations
simple (and standard), this labeling with a grade will be left implicit. This
structure will be called a Clifford term. From now on, t = t′ means that t and t′

are identical terms, while t =C t′ means that t and t′ are equal up to the axioms
of Clifford algebra (the values t� and t′� of t and t′ in C are equal for every
interpretation a� of the elements a ∈ V).

Of course it is not always possible to attribute a grade to a Clifford expression,
but we will consider ungraded expressions as expressions of grade ⊥. It is also
essential that the grades keep unchanged during the computation. But our aim
is to rewrite expressions of grade possibly non-zero to 0, which is a scalar. This
is the only case of non-preservation of the grade, and for this reason, we create a
new grade especially for 0; this is∞. More precisely,∞ is the grade of expressions
that are trivially equal to 0 due to absorption properties of 0 and a few others
as shown below.

It is important to remind here the basic restriction we impose on Clifford
expressions: the geometric product is only allowed with at least one scalar as
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argument, that is a term of grade 0 or ∞. The rules for computing the grades,
denoted as gr(·), are the following:

– gr(0) = ∞; ∀x ∈ K∗, gr(x) = 0; ∀v ∈ V, gr(v) = 1 and gr(II)=3.
– If g1 = gr(t1) and g2 = gr(t2) then:
− gr(t1∼) = 3−̇g1;

− gr(t1 ∧ t2) =
{∞ if ⊥�= g1+̇g2 > 3,
g1+̇g2 otherwise;

− gr(t1 · t2) =
{∞ if g1 = 0 or g2 = 0,
|g1−̇g2| otherwise;

− gr(t1t2) = max(g1, g2) (we have g1 or g2 in {0,∞});

− gr(t1 + t2) =






min(g1, g2) if g1 =∞ or g2 =∞,
g1 if g1 = g2,
⊥ otherwise;

where K∗ is an arbitrary extension field of K and
• +̇ is the extension of + with x+̇∞ = ∞+̇x = ∞, and x+̇⊥=⊥ +̇x =⊥

when x �=∞,
• −̇ is the extension of − with x−̇∞ = ∞−̇x = ∞, and x−̇⊥=⊥−̇x = ⊥

when x �=∞,
• |∞| =∞ and |⊥| =⊥,
• the order on N (the set of natural numbers) is extended with ∀x ∈

N, x <⊥<∞.

In the sequel we will define rewriting systems as sets of conditional rules, i.e.
expressions of the form l→ r if C, where l and r are terms built with the same
symbols as above and variables, and C is some condition on these variables. Such
a set R defines a relation between Clifford terms defined by: t→R t′ if and only
if there is a subterm s of t and a rule l → r if C in R and a substitution σ
such that σ(l) = s and σ(C) is true and t′ is the term t after replacement of s
by σ(r) (and gr(σ(r)), and possibly a recomputation of some grades). A term t is
a R-normal form if there is no t′ such that t→R t′. R is terminating if for any t
there is no infinite sequence t →R t1 →R t2 → · · · . For any binary relation B
we note by B− its reflexive closure, B+ its transitive closure and B∗ its reflexive
and transitive closure.

In order to state conditions about grades implicitly we use the following
convention: the variables A,B,C will match with any Clifford term, the vari-
ables h, k will match with terms of grade 0 or ∞ (i.e. h always comes with
the condition gr(h) ∈ {0,∞}), the variables X,Y, Z will match with terms of
grade different from 0 or∞, and the variables x, y, z, u will match with terms of
grade 1.

We now consider the rewriting system E containing the following conditional
rules:

0A→ 0, 0 ∧A→ 0, h ·A→ 0, 0∼ → 0, 0 + 0→ 0,
A0→ 0, A ∧ 0→ 0, A · h→ 0, A ∧B → 0 if gr(A) + gr(B) > 3.
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It is rather easy to prove that grades are preserved by this rewriting system:

Theorem 1. If t→∗
E t′ then gr(t) = gr(t′).

Proof. We prove by structural induction on t that if t→−
E t′ then gr(t) = gr(t′).

In the base cases this is obvious since t = t′. If t is of the form t1
∼ (resp. t1 ∧ t2,

t1 · t2, t1t2, t1 + t2), and t′ �= 0 then t′ is of the form t′1
∼ (resp. t′1∧ t′2, t′1 · t′2, t′1t

′
2,

t′1 + t′2) and ∃i such that ti →−
E t′i (and tj = t′j for j �= i); hence by induction

hypothesis gr(ti) = gr(t′i), and thus gr(t) = gr(t′). If t′ = 0 then gr(t′) = ∞,
and either t is 0∼, or t is t1 ∧ t2 or t1t2 and ∃i such that ti = 0, or t is t1 + t2
and t1 = t2 = 0, or t is t1 · t2 and ∃i such that gr(ti) ∈ {0,∞}, or t = t1 ∧ t2 and
gr(t1) + gr(t2) > 3, and in all these cases we have gr(t) =∞.

From Theorem 1 we can easily prove:

Theorem 2. gr(t) =∞ if and only if t→∗
E 0.

Proof. If t →∗
E 0 then by Theorem 1 we have gr(t) = gr(0) = ∞. We prove the

converse by induction on t. In the base case gr(t) = ∞ implies t = 0; hence
t→∗

E 0. If t = t1
∼ and gr(t) =∞ then gr(t1) =∞; hence t1 →∗

E 0 by induction
hypothesis, and thus t →+

E 0. If t = t1t2 then ∃i such that gr(ti) = ∞; hence
ti →∗

E 0 and t →+
E 0. If t = t1 + t2 then gr(t1) = gr(t2) = ∞; hence t →+

E 0. If
t = t1 · t2 then ∃i such that gr(ti) ∈ {0,∞}; hence t→E 0. Finally, if t = t1 ∧ t2,
then either ∃i such that gr(ti) = ∞, and t →+

E 0, or gr(t1) + gr(t2) > 3 and
t→E 0.

It is therefore clear that once the grades are computed, we do not really need
to apply the rewriting system E. Instead, we apply the system E′ defined as:

A→ 0 if gr(A) =∞, A+ 0→ A, 0 +A→ A.

By Theorem 2 it is clear that t→∗
E′ t′ implies t =C t′, since the same obviously

holds of E. It is easy to prove by induction on t that if t is an E′-normal
form, then either t′ = 0 or t′ does not contain any occurrence of 0; and hence no
subterm of grade∞. Moreover, the termination ofE′ is obvious, and hence an E′-
normal form is easily obtained. However, if t �= 0, we may still have gr(t) =⊥,
which can be the case only if t contains a subterm t1 + t2 with gr(t1) �= gr(t2).
We consider the following system H of distributivity rules applied only to sums
of grade ⊥:

if gr(A) �= gr(B) then

h(A+B)→ hA+ hB, (A+B)h→ hA+ hB,
X · (A+B)→ X · A+X · B, (A+B) ·X → A ·X +B ·X,
C ∧ (A+B)→ C ∧A+ C ∧B, (A+B) ∧ C → A ∧ C +B ∧ C,
(A+B)∼ → A∼ +B∼.

Once again the termination of H is obvious (the depth of sums decreases),
and an H-normal form is either 0 or a sum t1 + · · · + tn of terms ti of grades
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non ⊥ (with any possible parentheses). However,H may produce subterms t1∧t2
with gr(t1) + gr(t2) > 3 (from t1 ∧ (t2 + t3) with gr(t2) �= gr(t3)); hence it is
necessary to recompute the grades and apply the system E′ once more. After
these steps, we therefore obtain an H and E′ normal form, that is either 0 or a
sum of terms ti’s whose subterms are non-zero and of grade between 0 and 3.

In the sequel, the rules of E′ will be used again, since some 0’s may be
produced, while the rules from H will not, since only sums of definite grades
may be produced by the forthcoming rules.

4 Reduction to Normal Form

The exact structure of the terms obtained after applying the basic simplification
rules can be made explicit by looking at the expressions for computing the grades,
from which we can read the following grammar for terms of grades 0 to 3:

L0 ::= K
∗|L0 + L0|L0L0|L1 · L1|L2 · L2|L3 · L3|L0 ∧ L0|L3

∼,
L1 ::= V|L1+L1|L0L1|L1L0|L1 · L2|L2 · L3|L3 · L2|L2 · L1|L0∧L1|L1∧L0|L2

∼,
L2 ::= L2 + L2|L0L2|L2L0|L1 · L3|L3 · L1|L0 ∧ L2|L1 ∧ L1|L2 ∧ L0|L1

∼,
L3 ::= II|L3 + L3|L0L3|L3L0|L0 ∧ L3|L1 ∧ L2|L2 ∧ L1|L3 ∧ L0|L0

∼,

where Li is the language of terms of grade i. Hence the structure of these terms
is still quite complex, and they can certainly be reduced by using computation
rules (equations) from Clifford algebra. For instance, computations in K can be
performed by standard means of computer algebra. Similarly, we can consider
terms of grade 0, such as (1 +a ·a)a ·b+ (−1)b ·a, as polynomials over indeter-
minates a · a, a · b, b · a, and perform computations using a computer algebra
system. But this is clearly not sufficient, and we need Clifford algebra to tell us
that b · a = a · b, and to reduce complex products.

But we must first make clear what we shall consider as irreducible terms, i.e.
sublanguages of Li of terms which cannot be reduced further simply by applying
rules of Clifford algebra. More precisely, we aim at defining a syntactic notion of
irreducibility, one that does not depend on particular relations which may exist
among the basic vectors (elements of V) appearing in a Clifford term; these
relations will then be easier to cope with.

It is quite obvious that the expressions a, a∼,a ·b, a∧b, II cannot be reduced
further, except by eventually swapping arguments. This is also the case of a ·b∼

and a · (b · c∼). This gives a (tentative) grammar for irreducible terms:

L◦
0 ::= K

∗|V ·V|V · (V · V∼)|L◦
0 + L◦

0|L◦
0L

◦
0,

L◦
1 ::= V|V · V∼|L◦

1 + L◦
1|L◦

0L
◦
1,

L◦
2 ::= V

∼|V ∧ V|L◦
2 + L◦

2|L◦
0L

◦
2,

L◦
3 ::= II|L◦

3 + L◦
3|L◦

0L
◦
3,

and it is difficult to see how it could be made simpler (except if an expression
is null, such as a ∧ b + b ∧ a, but it is convenient to keep a simple syntactic
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definition of irreducibility). We are going to prove that these irreducible terms
can always be reached as normal forms of a rewriting system R. The rules of R
are divided into the following 5 groups.

(1). Distributivity rules:

h(X + Y )→ hX + hY, (X + Y )∼ → X∼ + Y ∼,
Z · (X + Y )→ Z ·X + Z · Y, (X + Y ) · Z → X · Z + Y · Z,
Z ∧ (X + Y )→ Z ∧X + Z ∧ Y, (X + Y ) ∧ Z → X ∧ Z + Y ∧ Z.

(2). Linearity rules:

(hX) · Y → h(X · Y ), X · (hY )→ h(X · Y ),
(hX) ∧ Y → h(X ∧ Y ), X ∧ (hY )→ h(X ∧ Y ),
h ∧A→ hA, X ∧ h→ hX,
Xh→ hX, h(kX)→ (hk)X,
(hX)∼ → hX∼.

(3). Duality rules:

h∼ → −hII, II∼ → 1, X · II → −X∼, (X∼)∼ → −X,
where −t stands for (−1)t.

(4). Ordering rules:

X ∧ Y → (−1)abY ∧X if Y ≺ X,
X · Y → (−1)|a−b|−min(a,b)Y ·X if Y ≺ X,

where a = gr(X) and b = gr(Y ), and ≺ is an order on the set of ground
terms.

The following definition of ≺ is convenient. We assume an order < on V,
and also that for any constants c, c′ such that gr(c) < gr(c′) we have c < c′.
This order is extended to the set of function symbols in the following way:
· < ∧ <∼< ◦ < +. This symbol precedence is used to define an order on ground
terms. The definition is given by structural induction and extends the order <
on constants. Let t and t′ be two terms. Then t ≺ t′ if and only if one of the
following conditions is satisfied:

– gr(t) < gr(t′);
– gr(t) = gr(t′), ◦ �∈ {hd(t), hd(t′)} and hd(t) < hd(t′), where hd(·) denotes

the head symbol (i.e. the operator);
– gr(t) = gr(t′) and t = hA and t′ = kB, where either A ≺ B or A = B and
h ≺ k;

– gr(t) = gr(t′) and t = A and t′ = kB, where either A ≺ B or A = B;
– gr(t) = gr(t′) and t = hA and t′ = B, where A ≺ B;
– gr(t) = gr(t′) and hd(t) = hd(t′) = f �= ◦, where t = f(t1, . . . , tm) and
t′ = f(t′1, . . . , t′m), and there is some i ∈ {1, . . . ,m} such that ti ≺ t′i and for
every j ∈ {1, . . . , i} tj = t′j .
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In these rules, the scalar (−1)k has to be computed each time a rule is
applied. Alternatively, we can consider these rules as a shortcut for the set of
rules obtained from these by fixing the values of a and b (in {1, 2, 3}). The
reason for these two ordering rules is to reduce the number of rules in R. Remark
that ≺ allows to perform fast comparisons between terms.

(5). Reduction rules:

(5.1). (x ∧ y)∼ → x · y∼,
(5.2). (x · y∼)∼ → −x ∧ y,
(5.3). x ∧ (y · z∼)→ (x · y)z∼ − (x · z)y∼,
(5.4). x ∧ y∼ → −(x · y)II,
(5.5). x ∧ (y ∧ z)→ x · (y · z∼)II,
(5.6). x · (y ∧ z)→ (x · y)z − (x · z)y,
(5.7). (x · y∼) · z∼ → (x · z)y − (y · z)x,
(5.8). (x · y∼) · (z · u∼)→ (x · z)(y · u)− (x · u)(y · z),
(5.9). x∼ · y∼ → −x · y,

(5.10). (x ∧ y) · z∼ → x · (y · z∼),
(5.11). (x ∧ y) · (z ∧ u)→ (x · u)(y · z)− (x · z)(y · u).

We can now prove that the R-normal forms are exactly the irreducible terms.
Here, we consider that the order < on V is ∅, which results in the smallest
possible ≺.

Theorem 3. ∀t ∈ Li, t is a R-normal form if and only if t ∈ L◦
i .

Proof. The “if” part is easy: we prove by induction on t ∈ L◦
i that t is a R-

normal form. The base cases are a · b and a · (b · c∼) for i = 0, a and a · b∼ for
i = 1, a∼ and a∧b for i = 2, and II for i = 3, and these are obviously R-normal
forms. If t = t1 + t2 ∈ L◦

i , then t1, t2 ∈ L◦
i ; hence by induction hypothesis they

are R-normal forms, and so is t. If t = t1t2 ∈ L◦
i , then t1 ∈ L◦

0 and t2 ∈ L◦
i

are R-normal forms, and so is t.
We now prove by induction on t ∈ Li that if t is a R-normal form then

t ∈ L◦
i . The base cases are t ∈ K∗ for i = 0, t ∈ V for i = 1, and t = II for i = 3,

which are R-normal forms and are in L◦
i . We now consider t ∈ Li a R-normal

form; then every strict subterm t′ of t is a R-normal form as well, and hence
t′ ∈ L◦

gr(t′) by induction hypothesis. If t = t1 + t2 then t1, t2 ∈ L◦
i ; hence t ∈ L◦

i .
If t = t1t2, then according to a linearity rule t1 ∈ L◦

0 and t2 ∈ L◦
i ; hence t ∈ L◦

i .
We now consider the case where t is not a sum or a geometric product: then t
does not contain any sum or geometric product; otherwise some distributivity
or scalar rule could be applied to t. Hence any strict subterm t′ (with grade j)
of t, being in L◦

j , is of the form a · b or a · (b · c∼) if j = 0, a or a · b∼ if j = 1,
a∼ or a ∧ b if i = 2, and II if j = 3. We consider all possible cases:

If t = t1
∼ with t1 ∈ L◦

j , then j �= 0 and j �= 3 by duality rules. If j = 1
(i = 2) then t1 cannot be of the form a · b∼ because of rule (5.2); hence t1 is
of the form a, and t ∈ L◦

i . If j = 2 (i = 1) then t1 cannot be of the form a ∧ b
because of rule (5.1), and t1 �= a∼ because of duality; hence j = 2 is impossible.
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If t = t1 ∧ t2 with t1 ∈ L◦
j , t2 ∈ L◦

k, then j �= 0, k �= 0 due to scalar rules,
j ≤ k due to ordering rules, and of course j + k ≤ 3. We have t ∈ L◦

i when
j = k = 1 (i = 2) and t1, t2 ∈ V. In all other cases t �∈ L◦

i , and we prove that t
is not a R-normal form. In case j = k = 1, if t2 = a · b∼ then rule (5.3) applies,
and if t1 = a · b∼ and t2 ∈ V then an ordering rule applies. If j = 1, k = 2
(i = 3), then t2 �= a∼ because of rule (5.4) and t2 �= a ∧ b because of rule (5.5).

If t = t1 · t2 with t1 ∈ L◦
j , t2 ∈ L◦

k, then j �= 0, k �= 0 since t ∈ Li and
j ≤ k by ordering. If k = 3 then t2 = II, which is impossible by duality rules.
Hence we have 3 possible cases for j and k. In case j = k = 1 (i = 0), if t1 ∈ V

we have t ∈ L◦
i ; otherwise t1 = a · b∼, and t2 ∈ V is impossible by ordering,

while t2 ∈ V · V∼ is impossible due to rule (5.8). If j = 1, k = 2 (i = 1), then
t ∈ L◦

i when t1 ∈ V, t2 ∈ V∼, and the other cases are impossible: t2 = b ∧ c
because of rule (5.6), and t1 = a · b∼, t2 = c∼ because of rule (5.7). The last
case j = k = 2 is impossible: when t1 = a∼, t2 = b∧c is impossible by ordering,
and t2 = b∼ because of rule (5.9), and when t1 = a ∧ b, t2 = c∼ is impossible
because of rule (5.10), and t2 = c ∧ d because of rule (5.11).

It is clear that the above result can be generalized to any order <, by restrict-
ing the L◦

i ’s to the smallest elements w.r.t. the corresponding ≺. It is however
not necessary to give further details of this, though in the sequel we consider
only linear orders < on V, so that ≺ is also a linear order.

The previous theorem does not assert that the system is terminating but
only gives syntactic criteria for irreducible terms. Termination is the focus of the
next theorem.

Theorem 4. R ∪ E′ is a ground terminating rewriting system.

Proof. We proceed in four steps. First we prove that the system (1) + (2) is
terminating. Then we prove that (3) + (5) also has this property. In the third
step we prove that (1) + (2) + (3) + (5) is terminating by introducing a function
from the algebra of terms to N. We will conclude by considering the applicability
of rules in the group (4) together with the system E′ and the computation of
grades.

Let < be an order on function symbols: + < ◦ < · < ∧ <∼. Let <m be
the multiset path ordering extension of < (see [4]); then <m is a simplification
ordering and for every rule l → r in (1) or (2) it is clear that r <m l. This proves
the termination of (1) + (2).

We note by t[p← u] the result of the substitution by the term u at position p
in the term t. Let µ be the following map, defined by structural induction, from
the algebra of terms to (N, <); when x is a functional symbol of arity n, µ(x) is
the map from Nn to N associated to x:
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µ(∧)(x, y) = 7xy,
µ(∼)(x) = 4x,
µ(·)(x, y) = 2xy,
µ(◦)(x, y) = xy,
µ(+)(x, y) = x+ y,

µ(II) = 3,
µ(c) = 1 for every constant c �= II.

It is easy to check that for every rule l → r in (3) + (5) we have µ(r) < µ(l).
Moreover, if t is a ground term, p a position in t, u and v two terms such that
µ(v) < µ(u) then µ(t[p ← u]) < µ(t[p ← v]), i.e. µ is strictly monotone. As
(N, <) is well-founded, (3) + (5) is ground terminating.

The map µ also has the following property: for every rule l → r in (1) + (2)
µ(l) = µ(r). Let us assume that (1) + (2) + (3) + (5) is not terminating. As
(1) + (2) is, there would be an infinite sequence of terms with strictly decreasing
measure µ, which is impossible.

A similar argument may be used for proving the termination of R. Let (ti) be
an infinite sequence of terms successively rewritten by rules in R. As for every
rule l → r in (4) µ(l) = µ(r), there exists an i such that for every natural j ≥ i, tj
is irreducible by any rule in (3) + (5). We can assume without restriction that
j = 0. Let us prove by induction on n the number of occurrences of + in t0 that
such an infinite sequence cannot exist.

If n = 0, only the rules in (2) and (4) may be used. Let ν be the map defined
as follows:

ν(x ∧ y) =
{

2(ν(x) + ν(y)) if x ≺ y,
2(ν(x) + ν(y)) + 1 otherwise,

ν(x · y) = ν(x ∧ y),
ν(x∼) = ν(x),
ν(xy) = ν(x) + ν(y),

ν(x+ y) = ν(x) + ν(y),

ν(c) =
{

0 for every constant c ∈ K,
1 otherwise.

For every rule l → r in (2), ν(r) ≤ ν(l). But for every rule l → r in (4),
ν(r) < ν(l). As ν is strictly monotone and (N, <) well-founded, there exists an i
such that the only rules applied to the tj (j ≥ i) are those in (2) and as (2) is
terminating, (ti) cannot be infinite.

If n > 0, it is easy to see that there exists an i such that the root symbol of ti
is +. As the number of occurrences of the symbol + in a term cannot increase,
this means that there exist u and v such that ti = u + v and the number of
symbol + in u and v is less than n. Moreover, no rule can be applied to the root
of ti. By induction hypothesis, the sequence is finite.

We see that for every rule l → r in E′ we have µ(r) < µ(l). So even when
the rules in the system E′ are taken into account, it is necessarily terminating.
Note also that according to the previous argument, we can add any rewrite rules
l → r with µ(r) < µ(l) while preserving the termination property.
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5 Further Simplifications

We have therefore proved that an irreducible form of a Clifford expression can
indeed be reached in finite time. However, we have seen that the rewriting sys-
tem R may not be able to rewrite a term to 0, even if t =C 0; this is due to the
fact that what we have called irreducibility is only a syntactic property, as is
clear from the fact that all rules in R are left-linear (there is at most one occur-
rence of variables in their left-hand side), and hence that basic relations among
constants are not exploited. We do this by means of the following geometric
rules:

x ∧ x→ 0, x · x∼ → 0, x · (x · y∼)→ 0.

Clearly these rules are still not enough to rewrite a − a to 0; but for this only
standard algebraic computations are required, and it is convenient to sum up
the corresponding rules into a single one:

X → Y if X computes to Y and Y �= X .

This computation is to be performed by some computer algebra system, by
considering the subterms of X which are not elements of K as indeterminates.
Of course, we have to trust the system that µ(Y ) ≤ µ(X), but this is a very
reasonable assumption.

In order to minimize the number of indeterminates, we have to care for
equalities such as a · b∼ = −b · a∼. In order to avoid non-termination we use
the order ≺ previously defined. Then

x · y∼ → −y · x∼ if y ≺ x, x · (y · z∼)→ −y · (x · z∼) if y ≺ x.

Note that the measure µ is unchanged by application of these basic ordering
rules, and hence the argument used in Theorem 4 can be applied here.

The set of these rules (geometric, algebraic computations, basic orderings)
will be noted Z. Applying the rewriting system Z (obviously terminating) to a
term may replace subterms by 0; hence it is necessary to include the elimination
rules from E′ (and to recompute the grades each time a 0 is produced). Hence
the rewriting system to be applied to a term in Li in order to reduce it to 0 is
E′ ∪R ∪ Z, which is terminating as shown by the above remark.

The rules from R are all needed but sufficient for obtaining the reduced form
defined above. Unfortunately, the system E′∪R∪Z is not complete with respect
to the reduction to 0, due to the fact that R is not confluent. For instance, take
t = ((a ·b∼) · c∼) ·d∼, which is not a normal form: rule (5.7) applies, but in two
different ways, yielding either

t1 = ((a · b∼) · d)c − (c · d)(a · b∼) or t2 = (a · c)(b · d∼)− (b · c)(a · d∼),

which are both R-normal forms. Hence t→∗
R t1 or t→∗

R t2 (t1, t2 form a critical
pair ofR) according to the strategy used to apply the rules; hence either t−t2 →∗

R
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t1− t2 or t− t1 →∗
R t2 − t1, and t1 − t2 is a E′ ∪R∪Z-normal form, despite the

fact that t1 − t2 =C 0. The system cannot be complete if it is not confluent.
Of course, the standard way to make a rewriting system confluent is to add

rules derived from the critical pairs, either t1 → t2 or t2 → t1, or some other
rules able to rewrite t1 and t2 to a common term. The many critical pairs of R
can actually be solved by the following three rules:

(a). (x · y)(z · (u · v∼))− (x · z)(y · (u · v∼))→
(x · u)(v · (z · y∼))− (x · v)(u · (z · y∼)),

(b). (x · (y · z∼))u→ (x · u)(y · z∼) + (y · u)(z · x∼) + (z · u)(x · y∼),
(c). (x · (y · z∼))u∼ → (x · u)(z ∧ y) + (y · u)(x ∧ z) + (z · u)(y ∧ x).

However, these rules are non-terminating, and hence they do not guarantee con-
fluence. From a practical point of view, rule (b) may be difficult to control (or we
may restrict it to the case where u is not of the form t · t′∼), and rule (a) needs
a special order to ensure termination. Moreover, they are here written up to the
associative-commutative properties of the geometric product and the sum, and
rule (a) is not left linear, and this implies complex and expensive matchings.
They are not right-linear either, and hence also imply term duplications. For all
these reasons we postpone the study and use of these rules.

It should be noted that confluence does not imply completeness, and does
not solve either the problem of the strategy for applying the rules. Even if all
sequences of rewriting steps converge to the same result, some may converge
much faster than others. The complexity of the application of the rules (higher
if non-linear) should also be addressed.

Since some rules are not right-linear (the distributivity rules and rules (5.3),
(5.6)–(5.8) and (5.11)), we should be careful to apply such rules so as to avoid
the duplication of unnormalized terms, and hence of rewriting steps. This implies
an innermost strategy: if two rules can be applied, one to t and the other to t′

and t′ is a subterm of t, then the rule on t′ is applied first. We also give priority
to linear over non-linear rules.

We only have three rules which are not left-linear: the geometric rules. The
matching of the left-hand side of these rules therefore involves syntactic equality
testing between terms. However, in the context of the innermost strategy, we
can restrict the application of these rules to the case where the variables are
matched with elements of V, so that testing the equality becomes trivial. It is
indeed clear that with this strategy, the geometric rules can only be applied to
terms t∧ t, t · t∼ and t · (t · t′∼) where t and t′ are R-normal forms. By noting Z ′

the system Z with the above-mentioned restriction on the geometric rules, and
R′ = E′ ∪R ∪ Z ′, we have:

Theorem 5. If t, t′ ∈ L◦
1 then

t ∧ t→∗
R′ 0,

t · t∼ →∗
R′ 0,

t · (t · t′∼)→∗
R′ 0.

This remains true with an innermost strategy.
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Proof. We prove the first two, by induction on t. If t ∈ V, the result is trivial
by applying a restricted geometric rule. If t ∈ V · V∼, say t = a · b∼, then t ∧ t
rewrites to ((a · b∼) · a)b∼ − ((a · b∼) · b)a∼ by rule (5.3), and thus to 0 by
restricted geometric rules (and algebraic computations). Similarly, t · t∼ rewrites
to (a · b∼) · (−a · b) by rule (5.2), then to −[((a · b∼) · a)b − ((a · b∼) · b)a]
by rule (5.6) (and linearity), and finally to 0 by geometric rules and algebraic
computations.

If t = t1 + t2, then t ∧ t rewrites to t1 ∧ t1 + t1 ∧ t2 + t2 ∧ t1 + t2 ∧ t2 by
distributivity, and to 0 by induction hypothesis, anticommutativity of ∧ and
algebraic computations, and similarly for t · t∼. If t = t0t1 with t0 ∈ L◦

0, then
similarly t∧ t and t · t∼ rewrite to 0 by linearity rules and induction hypothesis.

We prove the last line by induction on t, then on t′. If t ∈ V, say t = a,
we prove that ∀t′, t · (t · t′∼) →∗

R′ 0. For t′ ∈ V this is trivial. If t′ = a · b∼,
then t · (t · t′∼) rewrites to −a · (a · b ∧ c) by rule (5.2) and linearity, then to
−[(a ·b)(a ·c)−(a ·c)(a ·b)] by rule (5.6), linearity and distributivity, and finally
to 0 by algebraic computation. The inductive cases t′ = t′1 + t′2 and t′ = t′0t′1 are
proved as above. The case t = a · b∼ is similar: t′ ∈ V is solved by rule (5.7),
and t′ ∈ V ·V∼ by rules (5.2) and (5.6). The inductive cases for t′ are solved as
usual. The induction on t can then proceed: if t = t1 + t2, the base case t′ ∈ V

is trivial, and t′ = a · b∼ is solved by rules (5.2) and (5.6), and the induction
on t′ is as above. If t = t0t1, then the base case t′ ∈ V is trivial, and the case
t′ = a ·b∼ is solved by rules (5.2) and (5.6), and the induction on t′ is as above.
All these rewriting steps follow an innermost strategy.

It is therefore clear that the rewriting system R′ is complete over E′ ∪R∪Z
for rewriting terms to 0, as far as an innermost strategy is used for applying the
rules. Although it is not complete over equality in Clifford algebra, it provides
simple normal forms for Clifford terms. Intuitively, the incompleteness of this
rewriting system is due to the lack of a general mechanism to use the linear
dependence of any four vectors.

6 Pseudo-coordinates

A possibility for computing normal forms of expressions in Clifford algebra and
proving equality consists in using both the rewriting system presented in the
previous sections and pseudo-coordinates. Although it is not possible to get a
complete rewriting system, it is possible to simplify a null expression to 0 by using
the previous rules on transformed expressions. The transformation consists in
replacing any vector by a linear combination of three independent vectors. In
some sense, this transformation is equivalent to the introduction of coordinates
for any vector. That is why it is called pseudo-coordinates expansion.

Pseudo-coordinates are a practical means of using coordinates in our syn-
thetic framework. They also ensure completeness of our approach. The main
idea is the following: let a,b be two non-zero non-collinear vectors, with a ≺ b.
Then a, a · b∼ are two orthogonal vectors and a, a · b∼, (a ∧ (a · b∼))∼ form



Clifford Term Rewriting for Geometric Reasoning in 3D 143

an orthogonal basis. Here a and b are called the reference vectors. It follows
that any vector c may be expressed as a linear combination of the three latter
vectors with Clifford coefficients. If c =C xa + y(a ·b∼) + z(a ∧ (a · b∼))∼, then
c · a =C x(a · a); hence

x =C
c · a
a · a

and similarly:

y =C
c · (a · b∼)

(a · b∼) · (a · b∼)
, z =C

c · (a ∧ (a · b∼))∼

(a ∧ (a · b∼))∼ · (a ∧ (a · b∼))∼
.

Using the reduction rules given in the previous section, one gets

(a ∧ (a · b∼))∼ =C (a · b)a− (a · a)b.

Let

κ = (a · a)(b · b)− (a · b)2;

we have

κ =C (a ∧ (a · b∼))∼ · (a ∧ (a · b∼))∼ =C (a · b∼) · (a · b∼),

and hence κ� = 0 if and only if a · b∼� = 0 if and only if a� and b� are
collinear. By replacing these expressions in x, y, z and factorizing a,b and a ·b∼,
we get the pseudo-coordinate expression of c relative to a and b:

c =C pce(c, a,b) = αa + βb + γ(a · b∼)

with

α =
(c · a)(b · b)− (c · b)(a · b)

κ
,

β =
(c · b)(a · a)− (c · a)(a · b)

κ
,

γ =
c · (a · b∼)

κ
.

Pseudo-coordinates may be introduced in a Clifford term t by replacing c with
pce(c,a,b). After all vectors in V (except a and b) are expanded this way, we
obtain an expression g =C t containing fractions: g is the pseudo-coordinate
expansion of t with respect to the reference vectors a and b. In order to eliminate
the denominators, we first multiply the whole expression by a suitable power of κ,
and compute the normal form of the resulting term; we obtain the reduced term ε
associated to the expression g. Hence there is an n such that κnt =C κng =C ε.
It is clear that ∀c ∈ V \ {a,b}, κpce(c, a,b) is a linear combination of a,b and
a ·b∼, where the coefficients are polynomials over K in the indeterminates a · a,
a · b, b · b, c · a, c · b and c · (a · b∼).
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Theorem 6. ε is a linear combination of 1, a,b,a ·b∼, a∼,b∼, a∧b and II with
coefficients being polynomials over K in the indeterminates a ·a, a ·b, b ·b, and
all c ·a (or a ·c if a ≺ c), c ·b (or b ·c), c · (a ·b∼) (or a · (c ·b∼) or a · (b ·c∼))
for every c ∈ V \ {a,b}.
Proof. By induction on t: In the base cases t = II, t = a, t = b, t ∈ K, this is
obvious. If t = c, this is true of κpce(c, a,b), and hence of ε which is identical
to κpce(c,a,b) up to basic orderings. Suppose now that it is true of t1 and t2;
then it is obviously true of t1 + t2 and t1t2 (if gr(t1) ∈ {0,∞}). To see that it is
also true of t1∼, t1 · t2 and t1 ∧ t2, it is sufficient to check that it is true of the
normal forms of:

– the duals of 1,a,b,a · b∼,a∼,b∼, a ∧ b and II,
– the inner and outer products of any two terms in {1, a,b,a · b∼, a∼,b∼,

a ∧ b, II},
and to apply linearity and distributivity rules.

The following theorem is crucial in our soundness proof.

Theorem 7 (Extension of generic Clifford algebraic 3D identities). Let h be a
Clifford term of grade 0 and t be any Clifford term. If h �=C 0 and for every value
h� �= 0⇒ t� = 0 then t =C 0.

Proof. It is clear that ht =C 0. Let e1, e2, e3 be three constants not in V denoting
vectors. Let t′ be the term t in which all c ∈ V are replaced by Xc

1e1 +Xc
2e2 +

Xc
3e3 where Xc

i are constants of grade 0. We note X the set of these constants.
By applying the same transformation to h we get the term h′.

We consider an orthonormal basis of V as a fixed interpretation of (e1, e2, e3),
such that e3�∼ = e1� ∧ e2�. Every interpretation of X can be extended
this way: the result is an orthonormal interpretation of X. We note =n

C the
equality modulo orthonormal interpretations. It is clear that there is a bijective
correspondence between V-interpretations and orthonormal X-interpretations
compatible with the replacement above: hence t =C 0 if and only if t′ =n

C 0, and
ht =C 0 if and only if h′t′ =n

C 0. It is easy to check that:

e1 · e1 =n
C e2 · e2 =n

C e3 · e3 =n
C 1,

e1 · e2 =n
C e2 · e3 =n

C e1 · e3 =n
C 0,

e1 ∧ e2 =n
C e3

∼, e2 ∧ e3 =n
C e1

∼, e1 ∧ e3 =n
C −e2

∼,
e1 · e∼2 =n

C −e3, e2 · e∼3 =n
C −e1, e1 · e∼3 =n

C e2.

Following the previous theorem, and using the rewriting system R′ as well as the
equations above, h′t′ can be reduced to a linear combination of 1, e1, e2, e3, e1

∼,
e2

∼, e3
∼ and II, with coefficients being polynomials in K[X]. Since h′t′ =n

C 0, its
scalar, vector, bivector and trivector parts are null. The scalar (resp. trivector)
part is the polynomial coefficient of 1 (resp. II); hence this polynomial is null.
The vector part is a linear combination of e1, e2, e3, and these three vectors are
independent; hence their polynomial coefficients are null. The bivector part is a
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linear combination of e1
∼, e2

∼, e3
∼, and these three bivectors are independent;

hence their polynomial coefficients are null. But these coefficients are the product
by h′ of the corresponding coefficients of t′, which are therefore null since h′ �=n

C 0.
Hence t′ =n

C 0, and t =C 0.

Completeness and soundness are direct consequences of the two previous
theorems:

Theorem 8. t =C 0 if and only if ε = 0.

Proof. If t =C 0, then κnt =C ε =C 0; since ε is a linear combination of
1,a,b,a · b∼ (which are independent vectors), a∼,b∼,a ∧ b (which are inde-
pendent bivectors) and II, as in the previous proof their polynomial coefficients
are null, and can be rewritten to 0 by standard algebraic computations. Since ε
is in normal form, we have ε = 0.

If ε = 0, κnt =C 0 and as κn �=C 0, it follows from the previous theorem that
t =C 0.

Pseudo-coordinate expansion can be applied to any Clifford expressions, but
it is important to compute the normal form of t first, because even if it does not
yield 0, it may considerably reduce t and hence ease the process of expansion.

Remark that applying pseudo-coordinate expansion only involves basic prop-
erties of the equality and rules from R′, which proves that the equational theory
obtained from R′ is complete for =C .

Experimental Considerations

The time necessary for simplifying an expression according to the previous
method highly depends on the choice of the basic vectors. In the worst case,
this is equivalent to the introduction of scalar coordinates. However it appears
that in many cases a good choice of the reference vectors reduces significantly
the number of simplification steps to be performed. The whole method and a
good strategy for introducing pseudo-coordinates are presented below.

The main problem in pseudo-coordinate expansion consists in selecting the
two reference vectors. In geometric constructions, some vectors are taken to be
free. As we deal with space problems, there are usually two or more free vectors.
It is thus possible to consider two of them as the reference vectors. Following
this strategy, any vector c different from the reference vectors, say a and b,
is replaced by its expansion pce(c, a,b) using pseudo-coordinates. We call this
global expansion.

However a more efficient strategy may be used. Instead of choosing the ref-
erence vectors once for all, one may decide to choose them according to the
neighborhood of the constant in a term. For instance, let us consider the follow-
ing (sub-)expression

(c · d)(c · e).
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If we decide to expand it using a,b as the reference vectors, one gets a much
larger expression than using d, e. In the latter case, the expression is already ex-
panded. The key idea consists in minimizing the number of monomials generated
by expansion. To achieve this goal, we propose the following two heuristics.

– Order-based local expansion. First, the set of constant vectors is ordered.
As innermost terms are reduced first, we compute the two maximal vectors
according to this order in each subterm and take them as the reference
vectors for the expansion in this subterm.

– Count-based local expansion. Occurrences of vectors in a term are counted,
and the two vectors with the two largest numbers of occurrences are taken
as the reference vectors.

As pseudo-coordinate expansion introduces a sum, this may lead to a combi-
natorial explosion of the number of terms. That is why in practice this expansion
should be applied only after a first normalization. It appears that the proof of
many geometric theorems does not require pseudo-coordinates (see Example 1
in Section 8).

Of course this depends on the formulation of the theorems. In some sense
we can assert that any constructive geometric theorem may be formulated in
a way such that it does not require to introduce pseudo-coordinates: simply
imagine that constructive expressions are built directly with pseudo-coordinates.
However, this would hardly qualify as a coordinate-free method! In practice, we
want to formulate theorems in the simplest possible way, and postpone the use
of pseudo-coordinates as far as possible.

Another important point concerns the use of computer algebra algorithms for
simplifying scalar expressions. This point is crucial for efficiency and the reader
may refer to [6] for further details. Last we stress the fact that the considera-
tions on the priority of rules (presented in the previous sections) are of prime
importance for the efficiency of rewriting.

7 Geometric Reasoning

The rewriting techniques and system for proving Clifford identities presented
in the previous sections have an interesting application to geometric reasoning.
This application is based on the observation that many geometric concepts and
relations can be represented by means of Clifford algebraic expressions. There-
fore, reasoning about geometric problems may be reduced to manipulating such
expressions and to investigating their relationships.

Consider for example the case of proving geometric theorems. From [5,7,11],
one sees that many theorems in plane and solid Euclidean geometry can be
formulated by using Clifford algebra, where the hypothesis-relations of a theorem
in question are expressed as a system of Clifford algebraic equations. By means
of vectorial equations solving as presented in [8], the hypothesis-relations may
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often be transformed into the following triangular form

h1(µ, χ1) = 0,
h2(µ, χ1, χ2) = 0,
· · · · · ·

hr(µ, χ1, χ2, . . . , χr) = 0,

(H)

where each hi is composed using Clifford operators, µ = (µ1, . . . , µd) are free
geometric entities (called parameters), and χ1, . . . , χr are constrained by the
geometric hypotheses (called dependents). Examples of geometric entities are
points, areas of triangles and other geometric invariants.

To make the triangularization possible and easy, it is usually required that
the theorem under consideration is stated constructively. To reduce the trian-
gularizing cost, the last two authors [6,11] have considered a restricted class of
geometric theorems for which each dependent χi can be solved in terms of µ
and χ1, . . . , χi−1 using Clifford operators; namely,

χi = fi(µ, χ1, . . . , χi−1), 1 ≤ i ≤ r. (H∗)

A number of popular constructions with the corresponding expressions of fi in
plane Euclidean geometry are provided in [6,11]. In fact, by solving vectorial
equations as in [7] similar constructions and their corresponding Clifford rep-
resentations may be established for 3D Euclidean geometry, where the vector
space V is of dimension 3. Here are two examples.

– Construct the vertex X such that P1P2P3X is a parallelogram:

X = parg(P1, P2, P3) = P1 + P3 − P2.

This representation holds for plane Euclidean geometry as well.
– Construct the intersection point X of line P1P2 and plane P3P4P5:

X = intp(P1, P2, P3, P4, P5) = λP1 + (1− λ)P2,

where

λ =
[P3 ∧ P4 ∧ P5 − P2 ∧ (P4 ∧ P5 + P3 ∧ P4 − P3 ∧ P5)]∼

[(P1 − P2) ∧ (P4 ∧ P5 + P3 ∧ P4 − P3 ∧ P5)]∼
.

The non-degeneracy condition is: the denominator is non-zero, i.e., P1P2 �‖
P3P4P5.

Such explicit Clifford representations may help make the proving method
more effective. In deriving them, some (non-automated yet elementary) geomet-
ric reasoning is often needed. We do not get into the details in this paper.

Meanwhile, constructive geometric theorems of this type have also be studied
by Yang, Zhang and Feng [13], using Clifford algebra formalism and similar prov-
ing techniques. A set of constructions with geometric objects including points,
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lines, circles, and ellipses in both 2D and 3D with the corresponding Clifford
expressions have been given by them.

Suppose that the conclusion of the theorem to be proved is given as another
Clifford expression

g = g(µ, χ1, . . . , χr) = 0. (C)

Let di be the denominator of fi in (H∗) for 1 ≤ i ≤ r. Proving the theorem
amounts to verifying whether (C) follows from (H∗), under the subsidiary (non-
degeneracy) conditions di �= 0.

The class under discussion (referred to as class C), though restricted, is large
enough to cover many interesting theorems in elementary geometry. The method
we use as proposed in [5,6,11] for confirming theorems in C consists of the fol-
lowing three steps.

Step A. Let f∗1 = f1. Do the following substitution for i = 2, . . . , r:

f∗i = f∗i (µ) = fi|χ1=f∗
1 ,... ,χi−1=f∗

i−1
= fi(µ, f∗1 , . . . , f

∗
i−1).

Step B. Substitute all χi = f∗i into g:

g∗ = g∗(µ) = g|χ1=f∗
1 ,... ,χr=f∗

r
= g(µ, f∗1 , . . . , f

∗
r ).

Let h be the numerator of g∗.

Step C. Apply a term-rewriting system with suitably chosen rewrite rules to h.
If h is rewritten to 0, then the theorem is true under the non-degeneracy
conditions di �= 0 for 1 ≤ i ≤ r. If h does not evaluate to 0 when the
(pseudo-)coordinate rules are applied, then the theorem is false under the con-
ditions di �= 0.

It is clear that in the above method both Clifford algebraic computing and
term-rewriting are required. The former can be done in a computer algebra
system, and the latter has been discussed in detail in the previous sections.

The entire method has been implemented in Maple V for algebraic computing
and in Objective Caml for term-rewriting with an interface between the two
systems. Here we do not enter into the implementation details (see [6] and a
forthcoming paper by us).

8 Application Examples

In this section we present some examples to illustrate the application of our
rewriting techniques and system to 3D geometric problems.

For any two vectors a and b, their cross product is defined as

a× b = (a ∧ b)∼.

Our first example shows how the rewriting procedure works by proving the well-
known Jacobi identity

a× (b× c) + b× (c× a) + c× (a× b) = 0
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for arbitrary 3D vectors a,b, c.

Example 1. Prove that

a ∧ (b ∧ c)∼ + b ∧ (c ∧ a)∼ + c ∧ (a ∧ b)∼ = 0

holds for any 3D vectors a,b, c.
Our system is able to produce a trace of the rewriting steps. We give below

some of them; the others similar or unessential for understanding the proof are
omitted.

rewriting (b^c)~
-> b.c~ done.

rewriting a^(b.c~)
-> (a.b)*c~+(-1)*((a.c)*b~) done.

rewriting (c^a)~
-> c.a~ done.

rewriting b^(c.a~)
-> (b.c)*a~+(-1)*((b.a)*c~) done.

rewriting b.a
-> (1)*(a.b) done.

(...)

rewriting (a.b)*c~+(-1)*(a.b)*c~
-> 0*c~ done.

(...)

0

(S+U) Rewriting Time = 0.04s
(S+U) Simplification Time = 0.00s
(S+U) Communication Time = 0.01s

The next two examples are taken from [7]. The proofs produced here are
somewhat simpler than those given by Li therein.

Example 2. Let a plane intersect the sides AB,AC,CD,DB of an arbitrary
tetrahedron ABCD at four points M,N,E, F respectively such that MNEF is
a parallelogram. Then the center of /−−/

−−
MNEF lies on the line connecting the

midpoints of AD and BC.
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A

B

C

D

M
N

F
E

Let D,E, F,M be free points. Without loss of generality, we can take M
as the origin: M = 0. The other dependent points may be constructed and
represented as follows

N = parg(0, F, E) = E − F,
C = on line(D,E) = uD + (1 − u)E,

A = intp(C,N, 0, E,D) = D +
1− u
u

F ,

B = int(A, 0, D, F ) = uD + (1− u)F,

where a scalar parameter u is introduced, and the expressions of the constructed
points have already been substituted into the expression of the point being con-
structed (see step A of the method in the preceding section). The exact meanings
of on line, int and other predicates, which are not really needed for understand-
ing the examples in this section, can be found in [6,11]. The conclusion of the
theorem to be proved is

g = (E −A−D) ∧ (B + C −A−D) = 0. % col(midp(M,E),midp(A,D),

midp(B,C))

Substituting the expressions of the dependents into g, one finds that the resulting
expression may be easily rewritten to 0. Therefore, the theorem is proved to be
true under the non-degeneracy condition u �= 0 (i.e., C does not coincide with E).

Example 3. Let ABCD be an arbitrary tetrahedron, and a plane which is
parallel to both AB and CD cut the tetrahedron into two parts, intersecting
the sides AD,AC,BC,BD at points P,Q,R, S respectively. Let the ratio of the
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distances from the plane to AB and CD respectively be r > 0. Determine the
ratio s of the signed volume of the two parts.

A

B

C

D

R

Q

S

P

Since the plane is parallel to AB and CD, it is easy to see that

|AQ|
|QC| =

|AP |
|PD| =

|BR|
|RC| =

|BS|
|SD| = r.

Let Q be located at the origin, i.e. Q = 0, and A,B, P be free points. Take C
on line AQ such that |AQ| : |QC| = r; then

C = −A
r
.

Similarly, take R on BC such that |BR| : |RC| = r, D on AP such that |AP | :
|PD| = r, and S on BD such that |BS| : |SD| = r. We have

R =
B + rC

r + 1
, D =

(r + 1)P −A
r

, S =
B + rD

r + 1
.

The points P,Q,R, S constructed above lie necessarily in the same plane. The
non-degeneracy conditions are r �= 0 and r �= −1, which are already satisfied by
the hypothesis. Let

vol(P1, P2, P3, P4) = (P2 − P1) ∧ (P3 − P1) ∧ (P4 − P1),

whose magnitude is six times the volume of the tetrahedron P1P2P3P4. Then
the ratio we wanted to find is

s = − vol(A,P,Q,R) + vol(A,P,R, S) + vol(A,R,B, S)
vol(D,P,Q,R) + vol(D,P,R, S) + vol(D,Q,C,R)

.

Simple substitution of the expressions of the dependent points with rewriting
yields

s =
r2(r + 3)

3r + 1
.
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The following example is the one that takes the largest amount of proving
time among 20 examples given in [2].

Example 4. Let M and N be two opposite vertices of an arbitrary paral-
lelepiped. Then the diagonals of the hexagon formed by the mid-points of the
edges that do not pass through M or N are concurrent.

A

B

C

M

M

M

M

M
M

M

N
5

2

1

3

4

6

Let M be located at the origin (i.e., M = 0) and the vertices A,B,C be
free points, and denote the six mid-points of the edges by M1, . . . ,M6 as in the
above figure. Obviously, we have

M1 =
A

2
+ C, M2 =

B

2
+ C,

M3 = B +
C

2
, M4 =

A

2
+B,

M5 = A+
B

2
, M6 = A+

C

2
.

It is easy to verify that

(M1 −M4) ∧ (M2 −M5) ∧ (M3 −M6) = 0,

so the three diagonals M1M4,M2M5,M3M6 are coplanar. Let M2M5 and M3M6

meet at point H ; then

H = intp(M2,M5,M3,M6, 0) =
A+B + C

2
.

The conclusion we need to prove is

g = (M1 −H) ∧ (M1 −M4) = 0.

This may be done easily by substituting the above expressions of M1,M4, H
into g (and rewriting the result to 0). As a side effect, we can see from the above
proof that the intersection point of the diagonals is actually the centroid of the
parallelepiped.

Term-rewriting is not heavily used for the above examples, while proving the
following theorem requires quite extensive rewriting to simplify the conclusion-
expression to 0.
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Example 5. Let ABCD be an arbitrary tetrahedron and M be the intersection
point of the line CD and the bisector of the dihedral angle formed by the two
planes ABC and ABD. Denote the altitudes of #ABC and #ABD on the base
AB by hC and hD respectively. Then hC : hD = |CM | : |DM |.

B

A

C

M

D

Without loss of generality, we take A as the origin; i.e., A = 0. Let B,C,M
be free points. Note that the normal vectors of the planes ABC and ABM are
(B ∧C)∼ and (B ∧M)∼, respectively. Let the normal vector of the plane ABD
be denoted by n. Then n is the symmetrical vector of (B ∧C)∼ with respect to
(B ∧M)∼. It is thus easy to represent n in terms of B,C,M as follows

n = 2(B ∧ C)∼ · (B ∧M)∼(B ∧M)∼ − (B ∧M)∼ · (B ∧M)∼(B ∧ C)∼.

The point D is the intersection of the line CM and the plane passing through 0
with normal vector n, so

D =
n · (M ∧ C)
n · (M − C)

.

The altitudes hC and hD can be easily represented:

hC = C · C − (B · C)2

B · B ,

hD = D ·D − (B ·D)2

B · B .

The conclusion of the theorem is

g = hD(M − C) · (M − C)− hC(M −D) · (M −D) = 0.

It is proved by substituting the expressions of n, D, hC , hD into g and rewriting
the resulting expression to 0.

As the ratio of the areas of #ABC and #ABD is the same as hC : hD, the
theorem stated as Example 4 in [13] may be considered as a corollary of the
above theorem. With the following conclusion-equation
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g∗ = (B ∧D) · (B ∧D)(M − C) · (M − C)− (B ∧ C) · (B ∧ C))(M −D)·

(M −D) = 0,

we have proved the corollary directly with less difficulty.

An essential matrix is a 3 × 3 matrix that can be expressed as a skew-
symmetrical matrix postmultiplied by a rotation matrix. It plays a central role
in two-view estimation as shown in the computer vision literature [9]. A rank
two matrix E is an essential matrix if and only if the equality (1) below holds.
There are several other properties about the essential matrix; we shall prove one
of them in the following example. Let

E = (e1 e2 e3)

be any 3× 3 matrix, where ei is the ith column vector for each i. Assume that
ei ·ej �= 0 for all i, j. For any matrix M , let M τ and tr(M) denote the transposed
matrix and trace of M respectively.

Example 6. If

EEτE =
1
2

tr(EEτ )E, (1)

then

g =
e3

e1 · e2
+

e1

e2 · e3
+

e2

e3 · e1
= 0. (2)

Let t = tr(EEτ ); then

t = e1 · e1 + e2 · e2 + e3 · e3.

The equality (1) is thus equivalent to the following set of conditions

h1 = 2(e1 · e1 e1 + e2 · e1 e2 + e3 · e1 e3)− te1 = 0,
h2 = 2(e1 · e2 e1 + e2 · e2 e2 + e3 · e2 e3)− te2 = 0,
h3 = 2(e1 · e3 e1 + e2 · e3 e2 + e3 · e3 e3)− te3 = 0.

Therefore, proving that (1) implies (2) is reduced to proving that

[h1 = 0, h2 = 0, h3 = 0] =⇒ g = 0. (3)

However, this cannot be done with a straightforward application of our method.
For none of the ei can be represented in terms of the other vectors, nor can
the hypothesis-expressions be easily triangularized. Even using coordinates, it is
also not easy to prove (3). We have tried Wu’s method without success, yet a
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machine proof can be obtained by using Gröbner bases only with respect to the
total degree term ordering.

Fortunately, we are able to give a simple proof of (3) with two rewriting steps:
Let g∗ be the numerator of g. The first step eliminates the term e1 · e3 e2 · e3 e3

from g∗ using h1 = 0, and the second step of generalized rewriting reduces the
resulting expression to 0 using h2 · e3 = 0. More precisely, we have

g∗ −→ g∗ − e2 · e3 h1 −→ g∗ − e2 · e3 h1 − h2 · e3 e1 −→ 0,

so (3) is proved. Moreover, we have seen that the hypothesis h3 = 0 is not needed
for proving the conclusion (2).

Although the above proof was produced on computer not automatically, we
would be able to find such a proof automatically when the generalized rewriting
technique is appropriately incorporated into our program. A systematic investi-
gation on generalized rewriting techniques and their mechanization, presenting
machine-generated proofs, and interpreting Clifford algebraic non-degeneracy
conditions geometrically all remain for future research.
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Some Applications of Clifford Algebra to

Geometries

Hongbo Li

Department of Physics and Astronomy
Arizona State University

Tempe, AZ 85287-1504, USA

Abstract. This paper focuses on a Clifford algebra model for geometric
computations in 2D and 3D geometries. The model integrates symbolic
representation of geometric entities, such as points, lines, planes, circles
and spheres, with that of geometric constraints such as angles and dis-
tances, and is appropriate for both symbolic and numeric computations.
Details on how to apply this model are provided and examples are given
to illustrate the application.

1 Background and Notations

Applications of Clifford algebra to geometries were originated in the work of
Grassmann and Hamilton in the 19th century [23]. For nearly 150 years, there
have been various applications of Clifford algebra to geometries, in the names of
Grassmann algebra, Grassmann-Cayley algebra, quaternions, dual quaternions,
Dirac algebra, Pauli algebra, spinor representation, Clifford algebra, dual vector
algebra, geometric algebra, etc. In the language of geometric algebra formulated
by Hestenes [16], for nD Euclidean geometry, there are four typical Clifford
algebra models:

(1) The Clifford model Gn: Points and directions of the nD Euclidean space
are both represented by vectors in Rn, and these vectors generate the Clifford
algebra Gn [7,8,16,17].

The Clifford model has it origin in Grassmann’s work on geometric com-
puting [19,34], and is completed by Clifford who combined Grassmann’s work
with Hamilton’s quaternions [23]. As a result, vector algebra and quaternions
are naturally included in this model. The model is very convenient for geomet-
ric computations involving Euclidean transformations of points and orthogonal
transformations of directions.

(2) The Grassmann model Gn+1: The nD affine Euclidean space is embedded
as a hyperplane of Rn+1, with unit distance from the origin. Points are repre-
sented by vectors in Rn+1 while directions are represented by vectors in Rn.
The space Rn+1 generates the Clifford algebra Gn+1 [18,19,34].

The Grassmann model was first proposed by Grassmann [34]. In coordinate
form, this model gives the homogeneous coordinates representation of points in

X.-S. Gao, D. Wang, and L. Yang (Eds.): ADG’98, LNAI 1669, pp. 156–179, 1999.
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projective space. This model is very efficient in geometric computations involv-
ing projective transformations, and has been extensively used in the study of
computer vision from the geometric viewpoint [1,2,3,4,9,10,25,36].

(3) The degenerate model Gn,0,1: The Clifford algebra Gn,0,1 is generated by
vectors in Rn⊕〈e0〉, where vector e0 is null and is perpendicular to Rn; the nD
Euclidean spaceRn as a subspace ofRn⊕〈e0〉 is imbedded in the Clifford algebra
Gn,0,1 by the mapping x �→ 1+e0∧x, for x ∈ Rn [5,6,20,21,24,37,38]. This model
usually occurs in the form of dual quaternions and dual vector algebra.

The degenerate model was first proposed by Clifford in the form of dual
quaternions, and further developed by Study [37], Blaschke [5] and others. Yang
and Freudenstein [38] applied another version of this model, the dual vector
algebra, in mechanism analysis. This model is an important computing tool for
Euclidean transformations of straight lines and planes.

(4) The Wachter model Gn+1,1: The nD Euclidean space Rn as a subspace
of the Minkowski space Rn+1,1, is imbedded in the null cone of the Minkowski
space through the mapping x �→ f0+x+(x2/2)f , where f, f0 are two null vectors
orthogonal to Rn. Gn+1,1 is the Clifford algebra generated by the Minkowski
space.

The Wachter model was first found in the work of Wachter (1792–1817) [35],
a student of Gauss. It is closely connected with distance geometry [12,13,35],
conformal geometry [14] and the geometry of spheres [31,32]. Various applica-
tions in engineering, computer vision and molecular structures can be found in
the literature [12,13,14,31,32].

In a recent series of papers [22,27,28,29,30], Li, Hestenes and Rockwood estab-
lished a universal Clifford algebra model for conformal geometries of Euclidean,
spherical and double-hyperbolic spaces. It is shown that the three geometric
spaces can be obtained from the null cone of the same Minkowski space through
three kinds of projective splits [18], and all the important analytical models for
hyperbolic geometry can be obtained by simply changing the viewpoint of a
projective split. The Wachter model is part of the universal model in the case of
Euclidean geometry.

In this paper, the unified theory of the Wachter model will be applied to 2D
and 3D Euclidean geometries, which are the most commonly used ones in ap-
plication. Details of algebraic representations and manipulations of geometric
entities and constraints will be presented in various lists and examples. The
present paper intends to show that, the Wachter model is capable of preserving
the advantages of the other three models while making the representations and
computations of distances, lines, planes, circles and spheres more easily.

This paper is organized as follows: an introduction of the Wachter model
in 2D case is given in Section 2. A discussion of the connections of the Wachter
model with other models is given in Section 3. The Wachter model in 3D ge-
ometry is presented in Section 4. Section 5 presents some applications of the
Wachter model in geometries.
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The definition and basic operators of Clifford algebra can be found in various
literature, for example [16,17,22,26]. To facilitate the readers, we present below
a brief explanation of the definition and basic operators of the algebra.

A real Clifford algebra generated by an n-dimensional real inner product
space Vn of signature1 (p, q, r), is the quentient algebra of the tensor algebra
⊗(Vn) by the two-sided ideal generated by elements of the form x ⊗ x − x · x,
where x ∈ Vn and the dot is the inner product in Vn. The Clifford algebra
is denoted by G(Vn), or Gp,q,r when we stress the signature of the space. An
element of a Clifford algebra is called a multivector, and the multiplication of
the algebra induced from the tensor product is called the geometric product.

The inner product of the space Vn can be extended to the whole of G(Vn).
The geometric product also induces a product, called the outer product, in the
algebra. In fact G(Vn) taken as a vector space, together with the outer product,
form a Grassmann algebra. The outer product is denoted by “∧”. There is an-
other important product in Clifford algebra, called the cross product. The cross
product of two multivectors x, y is x×y = (xy−yx)/2, where the juxtaposition of
multivectors represents the geometric product. We follow the notation x2 = xx
for a multivector x, and call it the square of x.

For two multivectors x, y, if xy = yx = 1, we say x, y are both invertible and
write x = y−1, y = x−1. Not all multivectors are invertible. For two multivectors
x, y, if xy−1 = y−1x, we write xy−1 = y−1x = x/y.

A fundamental concept in Clifford algebra is r-blade (blade of grade r).
Let a1, . . . , ar be vectors of Vn, then a1 ∧ · · · ∧ ar is called an r-blade if it is
nonzero. The square of a blade is a scalar, which equals the inner product of
the blade with itself. The magnitude of a blade x is defined as |x| = √|x2|.
The reverse of an r-blade x is defined as x† = (−1)r(r−1)/2x. The main anti-
automorphism of an r-blade x is x∗ = (−1)rx. The latter two concepts can be
extended to any multivector by linearity.

Let x be an invertible blade. The projection of a multivector y onto x is
defined by Px(y) = (y · x)x−1. The dual of a multivector y with respect to x is
defined by yx†. In particular, when x is an n-blade, called a pseudoscalar, the
dual is denoted as y∼. Themeet of two multivectors y, z is defined as y∨z = y∼·z.

The set of all r-blades where r is even, together with R, generates a vec-
tor subspace G+(Vn) of G(Vn). It is closed under the geometric product, and
therefore is a subalgebra of G(Vn), called the even subalgebra.

Let a1, . . . , ar be invertible vectors of Vn. Then a1 · · · ar is called a versor.
When r is even, a1 · · · ar is called a spinor. The adjugation of a multivector y by
a versor x is defined as Ad∗x(y) = x∗−1yx. When x is a spinor, since Ad∗x(y) =
x−1yx, we can use a different symbol Adx(y) to represent Ad∗x(y).
1 The signature of a real inner product space is a triplet of nonnegative integers whose
sum equals the dimension of the space; the first (second, third) integer equals the
dimension of a maximal subspace where every vector x satisfies x · x > 0 (< 0, = 0).
A real inner product space with signature (p, q, r) is often denoted by Rp,q,r; when
r = 0 it is denoted by Rp,q ; when q = r = 0 it is denoted by Rp; when p = r = 0 it
is denoted by R−q .
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2 The Wachter Model for the Plane

2.1 Basic Representations

Consider the Minkowski space R3,1. It contains the plane R2 as a subspace. The
orthogonal complement of R2 in the Minkowski space is denoted as R1,1, which
is a Minkowski plane. Let (f, f0) be a hyperbolic pair of the Minkowski plane,
i.e.,

f2 = f2
0 = 0, f · f0 = −1. (1)

The following mapping

A �→ Á = f0 +A+
A2

2
f, (2)

maps a vector A ∈ R2 to a null vector Á in R3,1, i.e., Á2 = 0. A fundamental
property of this mapping is that the mapping, being one-to-one and onto the set

{x ∈ R3,1|x2 = 0, x · f = −1}, (3)

satisfies

Á · B́ = −|A−B|
2

2
, (4)

for A,B ∈ R2. The set (3) together with its connection with the plane (2), is
called the Wachter model of the plane. (4) says that in the Wachter model, the
square of the distance between two points on the plane can be represented by
the inner product of their null-vector representations. This property decides the
importance of the Wachter model in the study of distance geometry [12,35].

Another main application of the Wachter model is in the conformal geometry
of the plane, i.e., in the study of the transformations that always map a line or
circle to a line or circle. In the Wachter model, a line passing through two points
A,B has the representation f ∧ Á ∧ B́; a circle passing through three points
A,B,C has the representation Á ∧ B́ ∧ Ć. The representation is unique up to a
nonzero scale.

To derive the above representations of lines and circles, we need the Ptolemy’s
Theorem in plane geometry, which says that four points Ai, i = 1, . . . , 4, are on
the same line or circle if and only if det(|Ai −Aj |2)4×4 = 0. Since

(Á1 ∧ Á2 ∧ Á3 ∧ Á4)2 = det(Ái · Áj)4×4 =
1
16

det(|Ai − Aj |2)4×4, (5)

the four points Ai, i = 1, . . . , 4, are on the same line or circle if and only if
Á1 ∧ Á2 ∧ Á3 ∧ Á4 = 0. Therefore we can use Á ∧ B́ ∧ Ć to represent the line
passing through A,B,C if they are collinear, or the circle passing through them
otherwise. A point D is on the line or circle if and only if Á ∧ B́ ∧ Ć ∧ D́ = 0.

Next we show that the vector f is always on the blade Á ∧ B́ ∧ Ć if points
A,B,C are collinear. Assume that A �= B, then C = λA + (1 − λ)B for some
λ ∈ R. As a result,

f ∧ Á ∧ B́ ∧ Ć = f ∧ (f0 +A) ∧ (f0 +B) ∧ (f0 + λA+ (1− λ)B) = 0. (6)
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This conclusion guarantees that we can use f ∧ Á ∧ B́ to represent line AB, as
it differs from Á ∧ B́ ∧ Ć only by a nonzero scale.

Indeed, the null vector f represents the point at infinity of the plane (not
the concept in projective geometry), and is on every line of the plane. So line
f ∧Á∧B́ can also be explained as the circle passing through the point at infinity
and points A,B. The null vector f0 represents the origin of the plane, as it is
the representation of the zero vector of the plane.

For a circle on the plane, the usual way to describe it is through its center and
radius; for a line, the usually way is through its normal direction and distance
from the origin. In the Wachter model, a circle with center O and radius ρ is
represented by (Ó− (ρ2/2)f)∼; a line with unit normal n and n-distance δ (the
signed distance from the origin to the line in the direction of n) is represented
by (n+ δf)∼.

These representations can be obtained as follows: let A be a point on the
plane. First, since A

Á ∧ (Ó − ρ
2

2
f)∼ = (Á · (Ó − ρ

2

2
f))∼ =

(ρ2 − |A− O|2)∼
2

, (7)

is on the circle with center O and radius ρ, i.e., |A − O| = ρ, if and only if
Á∧(Ó−(ρ2/2)f)∼ = 0, therefore the circle can be represented by (Ó−(ρ2/2)f)∼.
Second, since A

Á ∧ (n+ δf)∼ = (Á · (n+ δf))∼ = (A · n− δ)∼, (8)

is on the line with unit normal n and n-distance δ, i.e., A · n = δ, if and only if
Á ∧ (n+ δf)∼ = 0, therefore the line can be represented by (n+ δf)∼.

The representations of circles and lines through their geometric data, together
with the previous representations through their points, enable us to derive the
center and radius of a circle from its three points, and the normal and distance
to the origin of a line from its two points. The formulas are provided in the
following table, which is on representing basic geometric entities and constraints
in the 2D geometry within the Wachter model.

Geometric entities and constraints Representations

The origin f0

The point at infinity f

The square of the distance between
points A,B

− 2Á · B́
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Line AB f ∧ Á ∧ B́

Line (A, l), where l is the direction f ∧ Á ∧ l

The line with unit normal n and signed
distance δ away from the origin

(n+ δf)∼

The ratio of collinear line segments AB
and CD

f ∧ Á ∧ B́
f ∧ Ć ∧ D́

The signed distance from line (A, l) to
point B

(f ∧ Á ∧ l ∧ B́)∼

The signed area of triangle ABC (f ∧ Á ∧ B́ ∧ Ć)∼

The inner product of vectors A−B and
C −D

(f ∧ Á ∧ B́) · (f ∧ Ć ∧ D́)

The intersection of lines AB and CD

(f ∧ Á ∧ B́ ∧ Ć)∼D
(f ∧ Á ∧ B́ ∧ (Ć − D́))∼

− (f ∧ Á ∧ B́ ∧ D́)∼C
(f ∧ Á ∧ B́ ∧ (Ć − D́))∼

The circle passing through points
A,B,C

Á ∧ B́ ∧ Ć

The circle with center O and radius ρ (Ó −
ρ2

2
f)∼

The center of circle ABC (Á ∧ B́ ∧ Ć)2f
−2(Á ∧ B́ ∧ Ć) · (f ∧ Á ∧ B́ ∧ Ć)

The square of the radius of circle ABC −
(Á ∧ B́ ∧ Ć)2

(f ∧ Á ∧ B́ ∧ Ć)2

The square of the distance between
point D and the center of circle ABC

ρ2 − 2
Á ∧ B́ ∧ Ć ∧ D́
f ∧ Á ∧ B́ ∧ Ć

The signed distance from line (n+δf)∼

to the center of the circle ABC
−δ −

n ∧ Á ∧ B́ ∧ Ć
f ∧ Á ∧ B́ ∧ Ć

The intersection of circles ABC and
DEF

(Á ∧ B́ ∧ Ć) ∨ (D́ ∧ É ∧ F́ )
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The intersection of line AB and circle
CDE

(f ∧ Á ∧ B́) ∨ (Ć ∧ D́ ∧ É)

The point of tangency of line AB and
circle CDE

((Ć ∧ D́∧ É)∨ (f ∧ Á∧ B́)) · (f ∧ Á∧ B́)

The point of tangency of circles ABC
and DEF

((D́∧ É∧ F́ )∨(Á∧ B́∧ Ć)) · (Á∧ B́∧ Ć)

The tangent line of circle ABC at
point D

f ∧ (D́ · (Á ∧ B́ ∧ Ć))

The constraint that points A,B,C are
collinear

f ∧ Á ∧ B́ ∧ Ć = 0

The constraint that points A,B,C,D
are on the same circle

Á ∧ B́ ∧ Ć ∧ D́ = 0

The constraint that lines AB,CD are
parallel

f ∧ Á ∧ B́ ∧ Ć = f ∧ Á ∧ B́ ∧ D́

The constraint that lines AB,CD are
perpendicular

(f ∧ Á ∧ B́) · (f ∧ Ć ∧ D́) = 0

The constraint that lines AB,CD,EF
are concurrent

(f ∧ Á ∧ B́ ∧ Ć) · (f ∧ D́ ∧ É ∧ F́ )
= (f ∧ Á ∧ B́ ∧ D́) · (f ∧ Ć ∧ É ∧ F́ )

2.2 Conformal Transformations

A basic theorem in 2D conformal geometry with the Wachter model is that any
conformal transformation can be realized by the adjugation of a versor in G3,1,
and any versor realizes a conformal transformation through its adjugation. Two
versors induce the same conformal transformation if and only if they are the
same up to a nonzero scalar or pseudoscalar factor [30]. In this section we provide
Clifford algebra representations for several typical conformal transformations.

Let M be an algebraic entity in the Wachter model representing a geometric
object on the plane, i.e., a point, line or circle.

(1) The reflection ofMwith respect to lineAB is represented byAd∗
f∧Á∧B́

(M),

as f ∧ Á ∧ B́ represents the line.
(2) The inversion of M with respect to circle ABC is Ad∗

Á∧B́∧Ć
(M).

(3) The rotation ofM , centered at the origin and with signed angle θ relative
to the orientation of the plane, is represented by AdeθI2/2(M), where I2 is the
unit pseudoscalar representing the oriented plane [16].

(4) The translation of M along vector l is represented by Ad1−f∧l/2(M).
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(5) The dilation of M , centered at the origin and with positive ratio eλ, is
represented by Ade−λf∧f0/2(M). For example, when M = Á where A is a point,
then Ade−λf∧f0/2(M) represents point eλA.

(6) The dilation of M , centered at the origin and with negative ratio −eλ, is
represented by Ad(f∧f0)e−λf∧f0/2(M). For example, when M = Á where A is a
point, then Ad(f∧f0)e−λf∧f0/2(M) represents point −eλA.

(7) The special conformal transformation of a pointX along vector l is defined
to be point 1/(1/X − 1/l). For a geometric entity M , its image under this
transformation is represented by Ad1+f0∧l/2(M).

2.3 Geometric Relations between Two Entities

The geometric entities are assumed to be points, lines and circles. The following
results are direct applications of the theories proposed in [27].

1). Point D is inside circle ABC if and only if
Á ∧ B́ ∧ Ć ∧ D́
f ∧ Á ∧ B́ ∧ Ć > 0. This can

be obtained by comparing the radius of the circle with the distance between D
and the center of the circle.

2). For circles ABC, DEF , they intersect, are tangent, or do not intersect if
and only if

((Á ∧ B́ ∧ Ć) ∨ (D́ ∧ É ∧ F́ ))2 > 0, = 0, < 0,

respectively.
3). When circles ABC, DEF do not intersect, there is a pair of points that

are inversive to each other with respect to both circles. The two points, called
Poncelet points, correspond to the two null vectors

|Á ∧ B́ ∧ Ć||A2|(Á ∧ B́ ∧ Ć)∼ ± |D́ ∧ É ∧ F́ |A2 · (Á ∧ B́ ∧ Ć),

where A2 = (Á ∧ B́ ∧ Ć) ∨ (D́ ∧ É ∧ F́ ).
4). For line AB and circle CDE, they intersect, are tangent or do not intersect

if and only if

((f ∧ Á ∧ B́) ∨ (Ć ∧ D́ ∧ É))2 > 0, = 0, < 0,

respectively.
5). For two intersecting circles ABC and DEF , where A,B,C and D,E, F

are both ordered anticlockwise, the inner product of the two outward normal
vectors of radius length of the circles at any point of the intersection equals

t =
(Á ∧ B́ ∧ Ć) · (D́ ∧ É ∧ F́ )

(f ∧ Á ∧ B́ ∧ Ć) · (f ∧ D́ ∧ É ∧ F́ ) .

Therefore t represents a geometric invariant. We say the two circles are near,
orthogonal, or far, if t > 0, = 0, < 0, respectively.
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Fig. 1. The geometric relations between two circles.

2.4 Geometric Relations among Three Entities

There is an algebraic expression characterizing most of the relations among three
geometric entities. Let a, b, c be vectors in R3,1, and let

s(a, b, c) = (a · b)(b · c)(c · a). (9)

When a, b, c are null or of positive square, the sign of the scalar s(a, b, c) is
independent of the length and sign of each vector, and therefore is a geomet-
ric invariant. Below we discuss some inequality constraints of three geometric
entities using this invariant. The proofs are omitted because they are direct
applications of the tables in Section 2.1.

1. For points A,B, they are on different sides of line CD if and only if s(Á, B́,
(f ∧ Ć ∧ D́)∼) > 0, i.e.,

(f ∧ Á ∧ Ć ∧ D́) · (f ∧ B́ ∧ Ć ∧ D́) < 0.

2. For points A,B, they are on different sides of circle CDE if and only if
s(Á, B́, (Ć ∧ D́ ∧ É)∼) > 0, i.e.,

(Á ∧ Ć ∧ D́ ∧ É) · (B́ ∧ Ć ∧ D́ ∧ É) < 0.

3. For point A and parallel lines BC,DE, A is between the two lines if and
only if

s(Á, (f ∧ B́ ∧ Ć)∼, (f ∧ D́ ∧ É)∼) < 0.

4. For point A and intersecting lines BC,DE, A is in one of the two acute-
angled regions of the plane divided by the lines if and only if

s(Á, (f ∧ B́ ∧ Ć)∼, (f ∧ D́ ∧ É)∼) < 0.
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5. For line AB, circle CDE whose center does not lie on AB, and point F
inside the circle, F and the center of the circle are on the same side of the
line if and only if

s(F́ , (f ∧ Á ∧ B́)∼, (Ć ∧ D́ ∧ É)∼) > 0.

6. For line AB, circle CDE whose center does not lie on AB, and point F
outside the circle, F and the center of the circle are on the same side of the
line if and only if

s(F́ , (f ∧ Á ∧ B́)∼, (Ć ∧ D́ ∧ É)∼) < 0.

7. For far circles ABC, DEF , point X is inside or outside both of them if and
only if

s(X́, (Á ∧ B́ ∧ Ć)∼, (D́ ∧ É ∧ F́ )∼) < 0.

8. For near circles ABC, DEF , point X is inside or outside both of them if
and only if

s(X́, (Á ∧ B́ ∧ Ć)∼, (D́ ∧ É ∧ F́ )∼) > 0.

9. For intersecting lines AB,CD, the center of circle EFG is in one of the two
acute-angled regions of the plane divided by the lines if and only if

s((É ∧ F́ ∧ Ǵ)∼, (f ∧ Á ∧ B́)∼, (f ∧ Ć ∧ D́)∼) < 0.

10. For parallel lines AB,CD, the center of circle EFG is between the lines if
and only if

s((É ∧ F́ ∧ Ǵ)∼, (f ∧ Á ∧ B́)∼, (f ∧ Ć ∧ D́)∼) < 0.

11. For far circles ABC, DEF , their centers are on the same side of line GH if
and only if

s((f ∧ Ǵ ∧ H́)∼, (Á ∧ B́ ∧ Ć)∼, (D́ ∧ É ∧ F́ )∼) < 0.

12. For near circles ABC, DEF , their centers are on the same side of line GH
if and only if

s((f ∧ Ǵ ∧ H́)∼, (Á ∧ B́ ∧ Ć)∼, (D́ ∧ É ∧ F́ )∼) > 0.

13. For three circles ABC,DEF,GHI, they are all far from each other, or two
are far and both near to the third, if and only if

s((Á ∧ B́ ∧ Ć)∼, (D́ ∧ É ∧ F́ )∼, (Ǵ ∧ H́ ∧ Í)∼) < 0.
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3 Connections with Other Clifford Algebra Models

Having obtained some feeling about the Wachter model, we now discuss the
connections and differences of this model with other Clifford algebra models:
the Clifford, Grassmann and degenerate models.

In what follows, within the framework of 2D geometry, we present in each
model representations of typical geometric entities and constraints. Some typical
geometric entities are: points, directions, angles, areas, distances, ratios, line
segments, triangles, circles. Some typical geometric constraints are: collinearity
of three points; concurrence of three lines; parallelism (perpendicularity) of two
lines; co-circularity of four points.

In the Clifford model, a point A is represented by the vector from the origin,
which is on the plane, to the point. A direction is represented by a vector. Also,

– an angle as a scalar, is represented by the inner product of two unit vectors
along the sides of the angle;

– the signed area of triangle ABC is ((A −B) ∧ (A− C))∼/2;
– the square of the distance between points A,B is (A−B)2;
– the signed ratio of collinear line segments AB with CD is (A−B)/(C −D);
– a line passing through point A and with unit direction l is represented by

the pair (A, l), i.e., a point B is on the line if and only if (B −A) ∧ l = 0;
– the signed distance from line (A, l) to point C is ((C −A) ∧ l)∼;
– the intersection of two lines (A, l), (B,m) is

B ∧m
l ∧m l − A ∧ l

l ∧mm;

– a circle with center O and radius r is represented by the pair (O, r2), i.e., a
point A is on (inside) the circle if and only if (A−O)2 − r2 = 0 (< 0);

– the projection of a point C onto a line (A, l) is A+ Pl(C −A) = A+ ((C −
A) · l)l;

– the reflection of point B with respect to line (A, l) is A+Ad∗l (B −A);
– the rotation of point A by angle θ is Adeθ/2I2 (A);
– the translation of point A along vector l is A+ l;
– the constraint that three points A,B,C are collinear is represented by (A−
B) ∧ (A− C) = 0;

– the constraint that two lines AB,CD are parallel is represented by (A−B)∧
(C −D) = 0;

– the constraint that two lines AB,CD are perpendicular is represented by
(A−B) · (C −D) = 0.

Since R2 is a subspace of R3,1, the Clifford model G2 is a subalgebra of the
Clifford algebra G3,1 realizing the Wachter model. So this model is naturally
included in the Wachter model. Another realization of the Clifford model is to
use the fact that a point A in the Clifford model is represented by the vector
from the origin to the point, which corresponds to the directed line segment
f ∧ f0 ∧ Á. The set {f ∧ f0 ∧ Á|A ∈ R2}, together with the inner product in G3,1

and the following outer product g:

g(f ∧ f0 ∧ Á, f ∧ f0 ∧ B́) = f ∧ f0 ∧ Á ∧ B́,
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for A,B ∈ R2, realize the Clifford model within the Wachter model. This real-
ization is called the theorem of conformal split [19] of R2.

We see that in the Clifford model, circles and lines do not have algebraic
representations that can join algebraic manipulations as single terms. Also the
representations of affine properties, for example the signed area, the collinear
constraint, are not as simple as in the Wachter model.

To describe affine properties, it is convenient to embed the plane into a 3D
vector space, which is denoted by R2⊕〈e0〉, where vector e0 is orthogonal to R2.
By doing so we can represent an affine transformation with a 3× 3 matrix.

When we choose e20 = 1, we obtain the Grassmann model, where the plane
is the one in R3 = R2 ⊕ 〈e0〉 passing through the end of vector e0. A point in
the plane corresponds to the vector from the origin to the point. A direction is
represented by a vector in R2. Moreover,

– line AB is represented by A ∧B;
– the signed area of triangle ABC is (A ∧B ∧ C)∼/2;
– the signed ratio of collinear line segments AB with CD is A ∧B/C ∧D;
– the constraint that three points A,B,C are collinear is represented by A ∧
B ∧ C = 0;

– the constraint that two lines AB,CD are parallel is represented by A ∧C ∧
D = B ∧C ∧D;

– the constraint that three lines AB,CD,EF are concurrent is represented by
(A ∧B ∧C)∼(D ∧ E ∧ F )∼ = (A ∧B ∧D)∼(C ∧ E ∧ F )∼;

– vector a represents a point if and only if ∂(a) = e0 · a = 1; it represents a
direction if and only if ∂(a) = 0;

– the direction of line AB is represented by ∂(A∧B) = e0 · (A∧B) = B −A;
– the square of the distance between points A,B is (∂(A ∧B))2;
– the distance between line AB and point C is |A ∧B ∧ C|/|∂(A ∧B)|;
– a circle with center O and radius r is represented by the pair (O, r2);
– the intersection of two lines AB and CD is (A ∧B) ∨ (C ∧D)/∂((A ∧B) ∨

(C ∧D));
– the constraint that two lines AB,CD are perpendicular is represented by
∂(A ∧B) · ∂(C ∧D) = 0.

Compared with the Clifford model, the simplicity in representing affine prop-
erties here is obvious. One drawback of the Grassmann model is that the inner
product has geometric meaning only when restricted to vectors in the plane.
Another drawback is the representation of a circle. This model can be realized
within the Wachter model, as will be shown in Example 3 of the last section.

When we choose e20 = 0, we get the degenerate model. Historically, this
model occurred in the form of dual quaternions and dual vector algebra, and
has important applications in 3D geometry and mechanics. In this model, a
point A is represented by multivector 1 + e0 ∧ A, where A is the vector in R2

from the origin to the point. The origin is represented by scalar 1. Moreover,

– the signed area of triangle ABC is ((A −B) ∧ (A− C))∼/2;
– the square of the distance between points A,B is (A−B)2;
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– the signed ratio of collinear line segments AB with CD is (A−B)/(C −D);
– a circle with center O and radius r is represented by the pair (O, r2);
– a line passing through point A and with direction l is represented by l+ e0∧
A ∧ l;

– the reflection of point C with respect to line (A, l) is (l+ e0 ∧A∧ l)(1− e0 ∧
C)(l + e0 ∧A ∧ l) = 1 + e0 ∧ (2A− C − 2((A− C) · l)l);

– the rotation of a point C induced by a spinor U is AdU (1 + e0 ∧ C) =
1 + e0 ∧AdU (C);

– the translation of a point C along a vector l is (1+ e0 ∧ l/2)(1+ e0 ∧C)(1 +
e0 ∧ l/2) = 1 + e0 ∧ (C + l);

– the constraint that three points A,B,C are collinear is represented by (A−
B) ∧ (A− C) = 0;

– the constraint that two lines AB,CD are parallel is represented by (A−B)∧
(C −D) = 0;

– the constraint that two lines AB,CD are perpendicular is represented by
(A−B) · (C −D) = 0.

We see that in many representations in this model, we have to use the rep-
resentations of points and lines in the Clifford model, instead of the ones in the
model itself. We also have to represent a circle with a pair of algebraic entities.
Another drawback is that the Euclidean transformations of the plane do not have
a uniform representation, as can be seen from the representations of reflections,
rotations and translations in the previous list.

One advantage of this model is that a line has an algebraic representation
that can be used directly in algebraic manipulations, although not of a single
term. The degenerate model is more suitable for computations on Euclidean
transformations of lines. This model can also be realized in the Wachter model,
as will be shown in Example 4 in the last section.

The Clifford, Grassmann and degenerate models can all be realized within
the Wachter model. The Wachter model is capable of preserving the advantages
of the other three models while making the representations and computations
of distances, lines, planes, circles and spheres more easily. We shall given more
examples in later sections.

4 The Wachter Model for the Space

4.1 Points, Lines, Planes, Circles and Spheres

Similar to the 2D case, now consider the Minkowski space R4,1, which contains
the space R3 as a subspace. Let (f, f0) be a hyperbolic pair of the Minkowski
plane which is the orthogonal complement of R3. The set {x ∈ R3,1|x2 = 0, x ·
f = −1}, together with the mapping A �→ Á = f0 +A+(A2/2)f, forms a model
for the Euclidean space, called the Wachter model of the space.

In this model, the representations of a line and a circle by their points are
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the same as in the 2D case. A plane passing through three points A,B,C has the
representation f∧Á∧B́∧Ć; a sphere passing through four points A,B,C,D has
the representation Á∧ B́ ∧ Ć ∧ D́. Using geometric data, a sphere with center O
and radius ρ is represented by (Ó − (ρ2/2)f)∼; a plane with unit normal n
and n-distance δ is represented by (n+ δf)∼.

A line with direction l and n-distance δ, where n is a unit normal of the
line and is in the plane decided by the line and the origin of the space, can be
represented by f ∧ f0 ∧ l + δf ∧ n ∧ l. This is because points δn and δn+ l are
both on the line. A circle on plane ABC, with center O and radius ρ, is the
intersection of the plane with the sphere whose center is O and whose radius
is ρ, therefore can be represented by (Ó − (ρ2/2)f)∼ ∨ (f ∧ Á ∧ B́ ∧ Ć).

The following table gives more representations of typical geometric entities
in the 3D geometry.

Geometric entities and constraints Representations

Point A Á

Line AB f ∧ Á ∧ B́

Circle ABC Á ∧ B́ ∧ Ć

Plane ABC f ∧ Á ∧ B́ ∧ Ć

The plane normal to unit vector n and
with n-distance δ

(n+ δf)∼

The plane passing through point A and
normal to vector n

(n+ (A · n)f)∼

The plane passing through point A and
directions l,m

f ∧ Á ∧ l ∧m

The normal vector of plane ABC (f∧Á∧B́∧Ć)∼−(f∧f0∧Á∧B́∧Ć)∼f

The signed distance from the origin to
plane ABC

−
(f0 ∧ Á ∧ B́ ∧ Ć)∼
|f ∧ Á ∧ B́ ∧ Ć|

Sphere ABCD Á ∧ B́ ∧ Ć ∧ D́



170 Hongbo Li

The sphere with center O and radius ρ (Ó −
ρ2

2
f)∼

The center of sphere ABCD (Á ∧ B́ ∧ Ć ∧ D́)2f − 2(Á ∧ B́ ∧ Ć∧
D́) · (f ∧ Á ∧ B́ ∧ Ć ∧ D́)

The square of the radius of sphere
ABCD

−
(Á ∧ B́ ∧ Ć ∧ D́)2

(f ∧ Á ∧ B́ ∧ Ć ∧ D́)2

The circle on plane ABC, with center O
and radius ρ

(Ó −
ρ2

2
f) · (f ∧ Á ∧ B́ ∧ Ć)

The common perpendicular of non-
coplanar lines AB and CD

f ∧ (Á(f ∧ B́ ∧ Ć ∧ D́) ·N4

−B́(f ∧ Á ∧ Ć ∧ D́) ·N4)
∧(Ć(f ∧ Á ∧ B́ ∧ D́) ·N4

−D́(f ∧ Á ∧ B́ ∧ Ć) ·N4), where
N4 = f ∧ f0 ∧ (Á− B́) ∧ (Ć − D́)

The distance between two non-coplanar
lines AB,CD

|f ∧ Á ∧ B́ ∧ Ć ∧ D́|
|(A−B) ∧ (C −D)|

The ratio of the signed area of coplanar
triangles ABC and DEF

f ∧ Á ∧ B́ ∧ Ć
f ∧ D́ ∧ É ∧ F́

The signed volume of tetrahedron
ABCD

(f ∧ Á ∧ B́ ∧ Ć ∧ D́)∼

4.2 The Affine Representations of Points, Lines and Planes

For a geometric problem involving only points, lines and planes, it is better to
use f∧Á instead of Á to represent point A. The reason is, the set {f∧Á|A ∈ R3}
is affine:

λf ∧ B́ + (1− λ)f ∧ Ć = f ∧ D́,
where D = λB+(1−λ)C. This representation is called the affine representation
of a point. The affine representation of a line (plane) is the representation used
in the Wachter model.

We mention only one application here. Let Ar be a Minkowski r-blade, then
f ∧ Ar represents a point, line, or plane when r = 1, 2, or 3. For two such
blades Ar, As, where r < s, the projection of f ∧Ar onto f ∧As is

Pf∧As(f ∧Ar) = f ∧ Pf∧As(Ar). (10)

It is still a Minkowski r-blade, and represents a geometric entity. When explained
geometrically, (10) says that the feet drawn from point A to line BC and plane
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BCD are f ∧Pf∧B́∧Ć(Á) and f ∧Pf∧B́∧Ć∧D́(Á) respectively, and the projection
of line AB onto plane CDE is f ∧ Pf∧Ć∧D́∧É(Á) ∧ Pf∧Ć∧D́∧É(B́).

5 Applications

Example 1. Simson triangle.
Let ABC be a triangle, D be a point on the plane. Draw perpendicular lines

from D to the three sides AB, BC, CA of triangle ABC. Let C1, A1, B1 be the
three feet respectively. Triangle A1B1C1 is the so-called Simson triangle.

.
.

...

.
.

.

A

B C

D

O

A1

C1

B1

Fig. 2. Simson triangle.

When A,B,C,D,A1, B1, C1 are understood to be null vectors, we have the
following conclusion:

f ∧A1 ∧B1 ∧ C1 =
A ∧B ∧ C ∧D

2ρ2
, (11)

where ρ is the radius of circle ABC. (11) can be used to compute the signed
area of the Simson triangle.

An immediate corollary of (11) is: whenD is constrained on a circle concentric
with circle ABC, the area of the Simson triangle is constant. In particular, if D
is on circle ABC, then A1, B1, C1 are collinear, which is the classical Simson’s
theorem.

Now we prove (11). Point A1 is the foot drawn from point D to line BC,
therefore,

f ∧A1 = Pf∧B∧C(f ∧D). (12)

A direct computation gives

f ∧A1 = f ∧ Pf∧B∧C(D)

= f ∧ (
B + C

2
−
D · (B − C)(B − C)

2B · C ).
(13)
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Similarly we have

f ∧B1 = f ∧ (
C +A

2
−
D · (C −A)(C −A)

2C · A ),

f ∧C1 = f ∧ (
A+B

2
−
D · (A−B)(A −B)

2A ·B ).

(14)

Now
f ∧A1 ∧B1 ∧ C1 =

f ∧A ∧B ∧ C
4A · BB · CC · AΓ, (15)

where

Γ = A · BB · CC · A+A ·BD · (B − C)D · (C −A)
+D · (A−B)B · CD · (C −A) +D · (A−B)D · (B − C)C · A. (16)

The right-hand side of (11) equals

− (A ∧B ∧ C ∧D)(f ∧A ∧B ∧ C)2
2(A ∧B ∧ C)2

=
f ∧A ∧B ∧ C

4A ·BB · CC ·A (A ∧B ∧ C ∧D) · (f ∧A ∧B ∧C),
(17)

therefore we only need to prove

Γ = (A ∧B ∧ C ∧D) · (f ∧A ∧B ∧ C). (18)

The only constraint among vectors f,A,B,C,D is that they are in the same
4D space, i.e., f ∧A ∧B ∧ C ∧D = 0. So

(f ∧A ∧B ∧ C ∧D) · (f ∧A ∧B ∧C ∧D) = 0. (19)

We are going to see that the equality (18) is identical to (19). This can be proved
in various ways, for example, we can use affine coordinates of D with A,B,C
as the affine basis, and express everything with coordinates, or we can use the
method of straightening laws in [31], by which we can keep geometric meaning
in the proving procedure. The following are some direct computations without
expanding everything to inner products of vectors.

First, we expand the left-hand side of (19) in the following way:

((f ∧A ∧B ∧C ∧D) · f) · (A ∧B ∧ C ∧D)
= −(f ∧A ∧B ∧ C) · (A ∧B ∧ C ∧D)

+(f ∧ (A ∧B +B ∧ C + C ∧A) ∧D) · (A ∧B ∧ C ∧D).
(20)

From this, using

(f ∧A ∧B ∧ C) · (A ∧B ∧ C ∧D)
= −(A ∧B ∧ C) · (f · (A ∧B ∧C ∧D))
= (A ∧B ∧C) · ((A ∧B +B ∧ C + C ∧A) ∧D)− (A ∧B ∧ C)2

(21)
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and

(f ∧ (A ∧B +B ∧ C + C ∧A) ∧D) · (A ∧B ∧ C ∧D)
= −(A ∧B +B ∧ C + C ∧A) ∧D) · (f · (A ∧B ∧ C ∧D))
= (D ∧ (A−B) ∧ (B − C))2 − (A ∧B ∧ C) · ((A ∧B +B ∧ C + C ∧A) ∧D),

(22)
we obtain

(f ∧A ∧B ∧ C ∧D)2 = (D ∧ (A−B) ∧ (B − C))2 + (A ∧B ∧ C)2
−2(A ∧B ∧ C) · ((A ∧B + B ∧ C + C ∧A) ∧D). (23)

Second, using (21), together with

(A ∧B ∧ C)2 = −2A ·BB · CC ·A (24)

and

(D ∧ (A−B) ∧ (B − C))2 = 2(A ·BD · (B − C)D · (C −A)
+D · (A−B)B · CD · (C − A) +D · (A−B)D · (B − C)C · A), (25)

we obtain

Γ − (A ∧B ∧C ∧D) · (f ∧A ∧B ∧ C)
=

1
2
(D ∧ (A−B) ∧ (B − C))2 + (A ∧B ∧ C)2)
−(A ∧B ∧ C) · ((A ∧B +B ∧C + C ∧A) ∧D)

=
1
2
(f ∧A ∧B ∧ C ∧D)2.

(26)

This ends the proof.

Example 2. The direct kinematic problem of a Steward platform.
This example is cited from the work of B. Mourrain [31,32,33]. Consider a

platform attached to the ground by six extensible bars. Changing the lengths
of the bars slightly entails a small displacement of the platform so that this
mechanism is suited for doing precise movements of adjustment. This parallel
robot, also called Steawrd platform or left hand, can be used as flying simulator
or hand of a serial robot.

The direct kinematic problem of this robot can be described as follows: letXi,
i = 1, . . . , 6 be the endpoints of the bars on the ground, Zi, i = 1, . . . , 6 be the
points attached to the platform, which is moved by a displacement D = (R, T ),
where R is a 3D rotation, T is a 3D parallel displacement. The problem is, given
the lengths of the six bars |Xi − Zi| = li, i = 1, . . . , 6, find the displacement D.

In the Wachter model, the constraint that every Xi is transformed to Zi by
a rigid body motion, where i = 1, . . . , 6, can be expressed by

U−1fU = f, Źi = U−1X́iU,

where U is a spinor in G4,1. The constraint |Xi − Zi| = li is equivalent to

Źi · X́i = (U−1X́iU) · X́i = − l
2
i

2
.
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Using the above formulation and results from algebraic geometry, it can be
proved that the number of solutions for D is at most 40 [33].

Example 3. The Grassmann model of Rn within the Wachter model.
In the Wachter model of Rn, let f, f0 be the two null vectors representing the

point at infinity and the origin respectively. Let F = {A+ f0|A ∈ Rn}. Then F
is an affine hyperplane of Rn ⊕ 〈f0〉. The mapping

A �→ A+ f0, for A ∈ Rn (27)

is one-to-one and onto F . It maps the origin to f0.
Define an operator ∂ in G(Rn ⊕ 〈f0〉) as follows:

∂(x) = −f · x,
for x ∈ G(Rn ⊕ 〈f0〉). Then ∂(A) = 0 and ∂(A + f0) = 1 for A ∈ Rn. The
Clifford algebra G(Rn⊕〈f0〉), together with the mapping (27) and the operator ∂,
constitutes a model that is identifiable with the Grassmann model of Rn.

There is another realization of the Grassmann model within the Wachter
model, by means of the affine representations of points, lines, planes, etc. In the
Wachter model, an (r−1)-dimensional plane passing through r points A1, . . . , Ar

can be represented by

f ∧ Á1 ∧ · · · ∧ Ár

= f ∧A1 ∧ · · · ∧Ar + f ∧ f0 ∧ (A2 −A1) ∧ · · · ∧ (Ar −A1).
(28)

In the set {f ∧ x|x ∈ Gn+1,1} we define the following outer product g:

g(f ∧ x, f ∧ y) = f ∧ x ∧ y,
for x, y ∈ Gn+1,1. We also define an operator ∂ in it:

∂(f ∧ x) = (f ∧ f0) · (f ∧ x),
for x ∈ Gn+1,1−R, and ∂(λf) = 0 for λ ∈ R. Then ∂(f∧A) = 0 and ∂(f∧Á) = 1
for A ∈ Rn. The Clifford algebra Gn+1,1, together with the affine representations,
the outer product g and the operator ∂, provides another realization of the
Grassmann model.

Example 4. The degenerate model of the space.
The degenerate model can be derived from the affine representations of

points, lines, planes, etc. Let A1, . . . , Ar be r points in the space. Then (28)
gives a representation of the (r − 1)-dimensional plane passing through them.
The dual of this representation with respect to f0 ∧ f gives

(f ∧ Á1 ∧ · · · ∧ Ár)(f ∧ f0) =
(A2 −A1) ∧ · · · ∧ (Ar −A1) + f ∧A1 ∧ · · · ∧Ar.

(29)

This is exactly the degenerate model of the space. For example, point A is
represented by 1 + f ∧ A, line AB is represented by B − A + f ∧ A ∧ B, plane
ABC is represented by A ∧B +B ∧ C + C ∧A+ f ∧A ∧B ∧ C.
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One advantage of the degenerate model is that only one null vector occurs in
the representation, which will simplify computation when no dilation is involved.
To compensate for this advantage, we need to redefine the action of a versor on
a geometric entityM as follows: let U be a versor inducing a Euclidean transfor-
mation. Let M ′ = M(f ∧ f0). Then the image of M ′ under the transformation
is

Ad∗U (M
′) = U∗−1MU, (30)

where the overbar represents an outermorphism that satisfies A = A for A ∈ R3,
and f = −f . An outermorphism g in a Clifford algebra is a linear transformation
within the Clifford algebra that satisfies

g(a1 ∧ . . . ∧ ar) = g(a1) ∧ · · · ∧ g(ar),

for any multivectors a1, . . . , ar.
Now we can define a new spinor action “Ad∗∗” as follows:

Ad∗∗V (M) = V ∗∗−1MV, (31)

where V = U , the double-star symbol represents an outermorphism that satis-
fies A∗∗ = −A for A ∈ R3, and f∗∗ = f . In this way, the spinor inducing the
rotation from direction m to direction n is m(m + n), the spinor inducing the
translation along vector l is 1 + f ∧ l/2.

The geometric relationship between two geometric entitiesM1,M2 is M1M
†
2 .

Example 5. Dual quaternions.
Dual quaternions was first used byW. K. Clifford [6] in geometries. Later on it

was used to solve problems in mechanics [5]. The definition of dual quaternions
is: let Q be the set of quaternions, ε be a nilpotent algebraic element which
commutes with every quaternion. The set Q + εQ is called dual quaternions.
The set R+ εR is called dual numbers.

As shown in [17], quaternions are naturally included in the Clifford model of
the space: let {e1, e2, e3} be an orthonormal basis of R3. Then the correspon-
dence: i �→ e1∧ e2, j �→ e2∧ e3, k �→ e1 ∧ e3, gives a Clifford algebra isomorphism
of Q and G+

3 .
Dual quaternions is another form of the degenerate model of the space. In

the degenerate model, let ε = f ∧ I3, where I3 is a unit pseudo-scalar of G3.
Then G+

3 is a vector space spanned by 1, e1 ∧ e2, e2 ∧ e3, e1 ∧ e3, and εG+
3 is a

vector space spanned by f ∧ e1, f ∧ e2, f ∧ e3, f ∧ I3. Obviously ε commutes with
everything in G+

3 . As a consequence, G+(f ∧ I3) = G+
3 + εG+

3 is isomorphic to
dual quaternions as Clifford algebras.

In the degenerate model, the representations of point A, line (A, l) and plane
(A, l,m) can be written as

1 + f ∧A = 1 + εA⊥;
(l + f ∧A ∧ l)⊥ = l⊥ + εA⊥ × l⊥;
l ∧m+ f ∧A ∧ l ∧m = l ∧m+ ε(A ∧ l ∧m)⊥.

(32)
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Here “⊥” represents the dual in G3. From this we get the dual quaternions
representation of the space: point A is represented by

1 + εA⊥ ∈ 1 + εQ0, (33)

where Q0 is the set of pure quaternions together with zero; line (A, l), where l
is a unit vector, is represented by

l⊥ + εA⊥ × l⊥ ∈ Q̂0 + εQ0, (34)

where Q̂0 is the set of unit pure quaternions; a plane passing through point A
and normal to unit vector n is represented by

n⊥ + εn⊥ · A⊥ ∈ Q̂0 + εR. (35)

In the dual quaternions model, the action of versors needs to be redefined.
For a point or plane, the action of a versor U is Ad∗∗U . For a line, the action is
AdU . More explicitly, the versor generating the reflection with respect to a plane
with unit normal n and n-distance δ is

U = (n− δf)⊥ = n⊥ + εδ ∈ Q̂0 + εR, (36)

the image of geometric entityM , which is either a point, a line, or a plane, under
this reflection is

UMU, or UMU−1, or UMU. (37)

The spinor generating the rotation from point A to point B centering at the
origin is

V = −A(A+B) = A⊥(A⊥ +B⊥) ∈ Q, (38)

the image of geometric entity M under this rotation is

V −1MV. (39)

The spinor generating the translation from point A to point B is

W = 1 + f
B −A

2
= 1 + ε

B⊥ −A⊥

2
∈ 1 + εQ0, (40)

the image of geometric entity M , which is either a point, a straight line, or a
plane, under this translation is

WMW, or W−1MW, or WMW. (41)

As to the geometric relationship between two entities M1,M2, if M1 is not
a line but M2 is, the relationship is represented by M1M2, otherwise it is repre-
sented by M1M

†
2 .

Example 6. Dual vector algebra.
First let us explain what is dual vector algebra.We know that a vector algebra

is a three dimensional vector space V3 equipped with a inner product and a cross
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product of vectors. Now let ε be an algebraic nilpotent element that commutes
with everything. The set V3 + εV3 is called dual vectors. Dual vectors, equipped
with the inner product and cross product from the vector algebra, form the dual
vector algebra of V3.

Let us start from the dual quaternions model of R3. We know that Q0,
the set of pure quaternions and zero, is isomorphic to R−3 as vector algebra,
under the correspondence between {i, j, k} and an orthonormal basis ofR−3, and
the correspondences between the inner products and the cross products in Q0

andR−3 respectively. As a corollary,Q0+εQ0 and the dual vector algebra ofR−3

are isomorphic as vector algebras. This isometry identifies the dual quaternions
model of R3 with the dual vector algebra model of R−3: point A is represented
by

1 + εA; (42)

line (A, l) is represented by
l + εA× l, (43)

where “×” is the cross product in vector algebra; the plane passing through
point A and normal to vector n is represented by

n+ εn · A. (44)

The geometric product of two dual vectors x, y satisfies

xy = x · y + x× y. (45)

If we use the inner product in R3 for vectors, we get the dual vector algebra
of R3.

One application of dual vector algebra in geometry is the computation of two
non-coplanar lines [37,38]. For lines (A, l), (B,m), let n be the unit vector in the
direction of l×m, δ be the distance between the two lines, θ be the angle from l
to m. Let P be the intersection of the common perpendicular of the two lines
with line (A, l). Then

(l + εA× l)(m+ εB ×m) = eθ̃ñ, (46)

where
eθ̃ñ = cos θ̃ + ñ sin θ̃, (47)

θ̃ = θ + εδ, ñ = n+ εP × n, and

cos θ̃ = cos θ − εδ sin θ,
sin θ̃ = sin θ + εδ cos θ.

(48)

Formula (46) is equivalent to the following result by the Wachter model:

(f ∧A ∧ l)(f ∧B ∧m)
= l ·m+ f ∧ (B −A) ∧ l ∧m+ l ∧m

+l ·mf ∧ (B −A) + f ∧ (A ·ml −B · lm).
(49)
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The general form of (49) in nD geometry is [27]: let Ir, Is be r-blade, s-blade
in Gn respectively, 0 ≤ r, s ≤ n, then

(f ∧ Á ∧ Ir)(f ∧ B́ ∧ Is)
= ((f ∧ Á)(f ∧ B́)) ∧ (P(f∧Á)∼(Ir)P(f∧B́)∼(Is)).

(50)
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Decomposing Algebraic Varieties

Dongming Wang

LEIBNIZ–IMAG–CNRS
46, avenue Félix Viallet, 38031 Grenoble Cedex, France

Abstract. An algebraic variety is a geometric figure defined by the zeros
of a set of multivariate polynomials. This paper explains how to adapt
two general zero decomposition methods for efficient decomposition of
affine algebraic varieties into unmixed and irreducible components. Two
devices based on Gröbner bases are presented for computing the gen-
erators of the saturated ideals of triangular sets. We also discuss a few
techniques and variants which, when properly used, may speed up the
decomposition. Experiments for a set of examples are reported with com-
parison to show the performance and effectiveness of such techniques,
variants and the whole decomposition methods. Several theoretical re-
sults are stated along with the description of algorithms. The paper ends
with a brief mention of some applications of variety decomposition.

1 Introduction

Let K be a fixed ground field of characteristic 0, K[x1, . . . , xn] the ring of poly-
nomials in the variables x1, . . . , xn (abbreviated x ) with coefficients in K, and K̃
some extension field of K. For any non-empty polynomial set P ⊂ K[x ], Zero(P)
denotes the set of all common zeros in K̃ of the polynomials in P. Any element of
Zero(P) can then be considered as a point in an n-dimensional affine space An

K̃
with coordinates x over K̃. Let V be a collection of points in An

K̃; V is called
an affine algebraic variety, or simply a variety, if there exists a polynomial set
P ⊂ K[x ] such that V = Zero(P). We call P the defining set and P = 0 the
defining equations of V. Examples of algebraic varieties are algebraic curves and
surfaces in three-dimensional affine space.

A variety W is called a subvariety of another variety V, which is denoted as
W ⊂ V, if any point on W is also on V. A variety W is called a true subvariety
of V if W ⊂ V and W �= V.

A variety V ⊂ An
K̃ is said to be irreducible if it cannot be expressed as the

union of two or more true subvarieties of V. An irreducible subvariety of V is said
to be irredundant if it is not contained in another irreducible subvariety of V. An
irredundant irreducible subvariety of V is also called an irreducible component
of V. The variety V is said to be unmixed if all its irreducible components have
the same dimension.

We want to decompose any affine algebraic variety defined by a given set of
polynomials as the union of a family of irreducible subvarieties. One approach
initiated by Wu [22] for this purpose consists of two major steps: first computing

X.-S. Gao, D. Wang, and L. Yang (Eds.): ADG’98, LNAI 1669, pp. 180–206, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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an irreducible zero decomposition using the characteristic set method [12,22] and
then determining the defining sets of the subvarieties from the irreducible as-
cending sets (by means of which the zero decomposition is represented). Wu [23]
proposed a method based on Chow bases for determining the prime bases from
the obtained irreducible ascending sets. The use of Gröbner bases [2] was pro-
posed in [4] and [14] independently as another method for computing such prime
bases. The author has experimented the approach of irreducible variety decompo-
sition based on the computation of characteristic sets and Gröbner bases [15]; 16
examples were given to illustrate the method and its practical performance.

We remark that the technique of determining a prime basis from an irre-
ducible ascending set using Gröbner bases suggested in [4,14] works as well for
determining a defining set G of the corresponding variety from any (non-trivial)
ascending set A; this was shown in [7]. The set G is actually a finite basis for
the saturated ideal Ideal(A) : J∞, where Ideal(A) denotes the ideal generated
by the polynomials in A and J is the product of the initials of the polynomials
in A. The same technique of computing a finite basis for an arbitrary saturated
ideal was already given in [8]; see also [5,20]. Using this general technique and a
theorem about the dimensionality of any ascending set in [7], an unmixed variety
decomposition can be readily obtained from any proper zero decomposition.

In [16,19,21] are presented two general methods for decomposing any polyno-
mial system into triangular systems of different kinds, which make use of some
early elimination ideas of A. Seidenberg and J. M. Thomas with top-down elim-
ination, splitting and subresultant regular subchain as computational strategies.
Other decomposition methods have been proposed in [11] and [9,10]: the for-
mer emphasizes the canonicality of the computed triangular sets with various
requirements while the latter aims at computing the variety decomposition rep-
resented by regular and irreducible triangular sets. These methods may be used
to replace Ritt-Wu’s method of characteristic sets for irreducible or unmixed
decomposition of algebraic varieties. Note that replacing one method of zero de-
composition by another, faster or slower, does not necessarily yield a superior
or inferior method for the decomposition of varieties. For the triangular sets
computed by different algorithms usually have different forms, that affect the
subsequent computation of saturation bases. Therefore, investigating other zero
decomposition methods for variety decomposition has practical significance.

One purpose of this paper is to use our zero decomposition methods instead
of Ritt-Wu’s for decomposing algebraic varieties into unmixed and irreducible
components. In Section 3, a different algorithm for constructing the finite bases
for saturation ideals is recalled; this method proceeds by computing successively
ideal quotients using Gröbner bases. Meanwhile, we explain several variants and
techniques which can enhance the practical efficiency in different cases. A number
of properties for variety decomposition are presented and show, in particular, the
significance of the concept and computation of regular sets. The formal proofs for
most of the theoretical results are omitted and can be found from the indicated
references. Many of them are contained in the author’s forthcoming book [21].
Experiments with our decomposition methods based on Seidenberg’s elimination
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idea and subresultant regular subchains and the previous one using characteristic
sets are reported in table form for 22 examples. Our methods are faster in terms
of computing time for most of the complete cases. Some of the new techniques,
which do not lead to any additional cost, can speed up the decomposition many
times when they succeed. The paper ends with a short summary of applications
of variety decomposition.

2 Zero Decomposition

Let the variables be ordered as x1 ≺ · · · ≺ xn. For any xi and P ∈ K[x ], the
degree and leading coefficient of P in xi are denoted by deg(P, xi) and lcoef(P, xi)
respectively. If P is not a constant (i.e., P �∈ K), we call the smallest index p such
that P ∈ K[x1, . . . , xp] the class of P ; xp the leading variable of P , denoted by
lvar(P ); lcoef(P, xp) the initial of P , denoted by ini(P ); and P − ini(P )xdeg(P,xp)

p

the reductum of P , denoted by red(P ). For any two polynomials P and Q with
Q �∈ K, prem(P,Q) denotes the pseudo-remainder of P with respect to Q in
lvar(Q).

An ordered set T = [T1, . . . , Tr] of r non-constant polynomials is called a
triangular set if lvar(T1) ≺ · · · ≺ lvar(Tr). For any polynomial P ,

prem(P,T) � prem(· · · prem(P, Tr), . . . , T1)

is called the pseudo-remainder of P with respect to T; the symbol � reads as
“defined to be.” For any polynomial set P, prem(P, Ti) stands for {prem(P, Ti) |
P ∈ P}, prem(P,T) for {prem(P,T) | P ∈ P}, lvar(P) for {lvar(P ) | P ∈ P},
and ini(P) for {ini(P ) | P ∈ P}.

Let [P,Q] be a pair of polynomial sets, called a polynomial system, with which
the zero set Zero(P/Q) is of concern, where

Zero(P/Q) � Zero(P) \
⋃

Q∈Q

Zero(Q).

We write Zero(P) for Zero(P/∅) and Zero(P/Q) for Zero(P/{Q}), etc.
A triangular system is a pair [T,U] in which T is a triangular set and U a

polynomial set such that ini(T ) does not vanish on Zero(T/U) for any T ∈ T. A
triangular system [T,U] is said to be fine if 0 �∈ prem(U,T). A triangular set T

is fine if [T, ini(T)] is fine.
By zero decomposition we mean to compute for any given non-empty polyno-

mial set P ⊂ K[x ] a finite set Ψ which is either empty (in this case Zero(P) = ∅
in any extension field of K) or of the form Ψ = {[T1,U1], . . . , [Te,Ue]} such that

Zero(P) =
e⋃

i=1

Zero(Ti/Ui), (1)

where each [Ti,Ui] is a fine triangular system. In other words, either the empti-
ness of Zero(P) is detected or the polynomial set P is decomposed into finitely
many fine triangular systems [Ti,Ui]. We have been studying three different yet
related algorithms reviewed below for such zero decomposition.
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Ritt-Wu’s Algorithm

This is a well-known algorithm attributed to Ritt [12] and Wu [22] which starts by
computing a characteristic set C of the given polynomial set P. In the trivial case,
C is contradictory (i.e., C consists of a single constant) and thus Zero(P) = ∅.
Otherwise, the computed C is a (weak) ascending set (that is a triangular set
with some restriction on the degrees of polynomials) such that

Zero(P) ⊂ Zero(C), Zero(C/I) ⊂ Zero(P),

where I = ini(C). In fact, prem(P,C) = {0} holds as well. It follows from the
above zero relations that

Zero(P) = Zero(C/I) ∪
⋃

I∈I

Zero(P ∪ {I}).

One can proceed further by computing a characteristic set of each P∪{I} in the
same manner. This process will terminate so that a zero decomposition of the
form (1) is reached, with Ti = Ci and Ui = ini(Ti). In addition, the property
prem(P,Ci) = {0} holds for all i. See [3,12,17,22] for details.

Seidenberg’s Algorithm Refined

Now let us explain the algorithm described in [16] that computes the zero de-
composition (1) by eliminating the variables successively from xn to x1 with
recursive pseudo-division and by splitting the system whenever pseudo-division
is performed. Concretely, for each xk, k = n, . . . , 1, one proceeds as follows.

The iteration starts with k = n. If P does not contain any polynomial of
class k then go for k − 1. Otherwise, let T ∈ P be of class k and have minimal
degree in xk. Then

P = 0 ⇐⇒
{

P
∗ = 0, I = 0, red(T ) = 0, or

prem(P, T ) = 0, T = 0, I �= 0,

where
P
∗ = P \ {T }, I = ini(T ).

Therefore, we have

Zero(P) = Zero(P∗ ∪ {I, red(T )}) ∪ Zero(prem(P, T ) ∪ {T }/I).
Note that for both P∗ ∪ {I, red(T )} and prem(P, T )∪ {T } either the numbers of
polynomials of class k decrease, or so do the minimal degrees of such polynomials
in xk (in comparison with P). The process continues for each split system [P′,Q′]
by taking from P

′ another polynomial of class k and having minimal degree in xk

(if there exists any) and splitting further. With every [P′,Q′] one proceeds for
k − 1 when P′ contains none or only one polynomial T ′ of class k; in the latter
case, Q′ is meanwhile replaced by prem(Q′, T ′). The system [P′,Q′] is discarded
whenever P′ ∩ K \ {0} �= ∅ or 0 ∈ Q′.

Clearly, the above procedure will terminate with a zero decomposition of the
form (1).
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Subresultant-Based Algorithm

The third algorithm makes use of the key concept of subresultant regular sub-
chains (s.r.s.) and their computation, for which the details can be found in [19].
The algorithm also employs a top-down elimination for xk, k = n, . . . , 1.

Let us begin with k = n. If, trivially, P does not contain any polynomial of
class k, then proceed next for k−1. Consider the simple case in which P contains
only one polynomial P of class k; let I = ini(P ). Then

P = 0 ⇐⇒
{

P = 0, I �= 0; or
P \ {P} = 0, I = 0, red(P ) = 0.

Here two subsystems are produced. For the first, we have obtained a single
polynomial P in xk whose initial is assumed to be non-zero, so the process can
continue for next k. For the second, the minimal degree in xk of the polynomials
of class k has decreased. So we can assume that the subsystem may be dealt
with by induction.

Now come to the more general case in which P contains two or more polyno-
mials of class k. Let P1, P2 ∈ P be two of them with P2 having minimal degree
in xk and compute the s.r.s. H2, . . . , Hr of P1 and P2 with respect to xk. Let
I = lcoef(P2, xk) and Ii = lcoef(Hi, xk) for 2 ≤ i ≤ r. Then, by the properties
of s.r.s. we have

P = 0 ⇐⇒






P2 = 0, I = 0, red(P2) = 0, or
[

P12 = 0, Hi = 0,
Ii+1 = 0, . . . , Ir = 0,

I �= 0,
Ii �= 0

]
for some 2 ≤ i ≤ r,

where
P2 = P \ {P2}, P12 = P \ {P1, P2}.

It follows that

Zero(P) = Zero(P2 ∪ {I, red(P2)}) ∪
r⋃

i=2

Zero(P12 ∪ {Hi, Ii+1, . . . , Ir}/IIi).

To see the significance of the splitting, one may note that the number of the
polynomials of class k in P12 ∪ {Hi, Ii+1, . . . , Ir} is at least one less than that of
the polynomials of class k in P. The process may be continued by iterating the
above step for each split system [P′,Q′]. The remarks at the end of the preceding
subsection should also be added here. We may thus devise another algorithm to
compute zero decompositions of the form (1). Such an algorithm is described
formally in [21, Sect. 2.3].

A triangular system [T,U] or a triangular set T is said to be quasi-irreducible
if all the polynomials in T are irreducible over K. Making use of polynomial
factorization over the ground field K, one can compute zero decompositions of
the form (1) with each triangular system [Ti,Ui] quasi-irreducible.
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Computing Regular and Irreducible Triangular Systems

Let T = [T1, . . . , Tr] be a fine triangular set with xpj = lvar(Tj) and Ij = ini(Tj)
for 1 ≤ j ≤ r. T is said to be regular or called a regular set if

res(· · · res(res(Ij+1, Tj , xpj ), Tj−1, xpj−1 ), . . . , T1, xp1) �= 0

for 2 ≤ j ≤ r, where res(F,G, x) denotes the resultant of F and G with respect
to x.

A fine triangular system [T,U] is called a regular system if T is regular,
lvar(T) ∩ lvar(U) = ∅, and ini(U) does not vanish on Zero(T/U) for any U ∈ U.

An algorithm is presented in [21, Sect. 5.1] that computes zero decomposi-
tions of the form (1) with each [Ti,Ui] a regular system. The main new ingredient
of this algorithm is to use the only polynomial P2 of class k in P

′, when obtained,
to eliminate all the polynomials of class k from Q′, where [P′,Q′] is the poly-
nomial system under consideration and ini(P2) does not vanish on Zero(P′/Q′).
The elimination is performed with further splitting roughly as follows.

Assume that Q′ contains a polynomial, say P1, of class k. Compute the
s.r.s. H2, . . . , Hr of P1 and P2 with respect to xk, and let Ii = lcoef(Hi, xk) for
2 ≤ i ≤ r. Then, it follows from the properties of s.r.s. that

Zero(P′/Q
′) =

r⋃

i=2

Zero(P′ \ {P2} ∪ {Li, Ii+1, . . . , Ir}/Q
′ ∪ {Ii}),

where Li is the pseudo-quotient of P2 by Hi with respect to xk. Observe that,
when Hi is of class k, Li has smaller degree than P2 in xk. It is always the case
for 2 ≤ i ≤ r − 1. If Hr has class smaller than k, then

Zero(P′ \ {P2} ∪ {Lr}/Q
′ ∪ {Ir}) = Zero(P′/Q

′ \ {P1} ∪ {Ir}),

i.e., P1 may be eliminated from Q′. The above process can be repeated for
each split system so that all the polynomials of class k in the second set of the
system are eliminated. In this way, we shall obtain from [P′,Q′] finitely many new
systems [P′

i,Q
′
i] such that each P′

i contains either none or exactly one polynomial
of class k, while in the latter case Q′

i does not contain any polynomial of class k.

A fine triangular set T as above is said to be irreducible if each Tj, as a
polynomial of xpj , is irreducible over K(x1, . . . , xpj−1), where xp1 , . . . , xpj−1 are
adjoined as algebraic elements by the equations T1 = 0, . . . , Tj−1 = 0 in the case
j > 1.

A fine triangular system [T,U] is said to be irreducible if T is irreducible.
If T is reducible, one can find a k such that

T
{k−1} = [T1, . . . , Tk−1]

is irreducible and the polynomial Tk has an irreducible factorization of the form

DTk
.= F1 · · ·Ft
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over the extension field K(x1, . . . , xpk−1) with the algebraic
elements xp1 , . . ., xpk−1 adjoined by T1 = 0, . . . , Tk−1 = 0, where

D ∈ K[x1, . . . , xpk−1], Fj ∈ K[x1, . . . , xpk
]

all have degree smaller than deg(Ti, xpi) for 1 ≤ i ≤ k − 1 and the dot equality
means that prem(DTk − F1 · · ·Ft,T

{k−1}) = 0 (see [21, Sect. 7.5]).
Therefore, for each triangular system [Ti,Ui] in (1) with Ti reducible, say

having the same form as T above, one may get a further zero decomposition of
the form

Zero(Ti/Ui) = Zero({D} ∪ Ti/Ui) ∪
t⋃

j=1

Zero(Tij/Ui ∪ {D}), (2)

where each Tij is an ordered polynomial set obtained from Ti by replacing Tk

with Fj .
Let Uij = prem(Ui ∪ {D},Tij). If Uij contains 0 for some j, then the corre-

sponding component in (2) can be simply removed. It is easy to see that for those
components in which Uij does not contain 0, [Tij ,Uij ] is still a fine triangular
system and its irreducibility can be further verified.

The polynomial set {D} ∪ Ti may no longer be in triangular form, but it
can be further triangularized by applying the same algorithm as for P. In this
way we shall finally arrive at a zero decomposition of the form (1) with each
triangular set Ti irreducible.

In case Ritt-Wu’s algorithm is not used, the computed Ui may contain many
more polynomials than actually needed. The redundant polynomials can be
deleted by using the following theorem [16,21], which is of both theoretical in-
terest and practical importance.

Theorem 1. Let P be any polynomial set in K[x] having a zero decomposition
of the form (1) with each [Ti,Ui] a regular or irreducible triangular system. Then

Zero(P) =
e⋃

i=1

Zero(Ti/ini(Ti)). (3)

Let P have a zero decomposition of the form (3) with each Ti a fine triangular
set and Ψ = {T1, . . . ,Te}. We set Ψ = ∅ when Zero(P) = ∅ is verified. Ψ
is called a W-characteristic series of P if prem(P,Ti) = {0} for each i. Ψ is
called a regular series of P if all Ti are regular. In general, a regular series
is not necessarily a W-characteristic series of P (i.e., there is no guarantee for
prem(P,Ti) = {0}). However, it is proved in [21] that there exists an integer q
such that prem(P q,Ti) = 0 for all P ∈ P when Ti is regular.

3 Decomposition of Varieties

In the decomposition (3), Zero(Ti/ini(Ti)) is not necessarily an algebraic vari-
ety. We need to construct from each Ti a finite set Pi of polynomials, called a
saturation basis of Ti, that defines a subvariety of Zero(P).
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Ideal Saturation for Triangular Sets

Let I be an ideal and F a polynomial in K[x ]. The saturation of I with respect
to F is the ideal

I : F∞ � {P ∈ K[x ] | F qP ∈ I for some integer q > 0}.
For any non-empty polynomial set P ⊂ K[x ], Ideal(P) denotes the ideal generated
by (the polynomials in) P. A finite basis for I : F∞ can be computed by using
Gröbner bases [2] according to the following lemma.

Lemma 1. Let I be an ideal generated by P and F a polynomial in K[x];
F1, . . . , Ft be t factors of F such that F1 · · ·Ft �= 0 ⇐⇒ F �= 0;

P
∗ = P ∪ {zF − 1}, P

� = P ∪ {ziFi − 1 | 1 ≤ i ≤ t},
where z, z1, . . . , zt are new indeterminates; and G∗,G� be the Gröbner bases of
P
∗ in K[x, z] and of P

� in K[x, z1, . . . , zt] with respect to the purely lexicographical
term ordering (plex) determined with xl ≺ z and xl ≺ zj, respectively. Then

I : F∞ = Ideal(P∗) ∩ K[x] = Ideal(G∗ ∩ K[x])
= Ideal(P�) ∩ K[x] = Ideal(G� ∩ K[x]).

Proof. See [8,7,20].

In fact, for the Gröbner bases computation any compatible elimination order-
ing in which xi1

1 · · ·xin
n ≺ z (or zj) does. As we have mentioned in Section 1, the

above technique of computing saturation bases was introduced independently
by several researchers. The result stated in Lemma 1 appeared first in [8]. The
special case of the lemma, in which P is an irreducible ascending set A and F is
the product of the initials of the polynomials in A, was proved in [4,14]. A proof
for a slightly different version of the lemma may be found in [7]. The lemma
in the above form is stated and proved in [20,21]. What is explained below is
another method for determining a finite basis for any I : F∞; this method has
been presented in [5].

Let I and J be two ideals in K[x ]. The infinite set of polynomials

I : J � {F ∈ K[x ] | FG ∈ I for all G ∈ J}
is called the ideal quotient of I by J. It is easy to show that in K[x ] the quotient
of two ideals is an ideal (see, e.g., [5, p. 193]). For any polynomial F , we write
I : F instead of I : Ideal({F}).
Lemma 2. Let I be an ideal and F a polynomial in K[x], and let k be an
integer ≥ 1. Then

I : F∞ = I : F k ⇐⇒ I : F k = I : F k+1.

As a consequence, the minimal k can be determined by computing I : F i with i
increasing from 1.
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Proof. Exercise in [5, p. 196].

This lemma provides an algorithm for determining a basis for I : F∞ by
computing the bases for the ideal quotients I : F k with k increasing from 1. The
basis is obtained when I : F k = I : F k+1 is verified for some k; in this case
I : F k = I : F∞.

A basis for the ideal quotient I : G can be computed by using Gröbner bases
in the following way. Let I be generated by F1, . . . , Fs. Compute the Gröbner
basis G of

{zF1, . . . , zFs, (1− z)G}
in K[x , z] with respect to an elimination term ordering with xi ≺ z and let

H = {H/G | H ∈ G ∩ K[x ]},

where z is a new indeterminate. Then I : G = Ideal(H) and thus H is a finite
basis for I : G. See [5,8] for the correctness of this method.

Let T be any triangular set in K[x ]. The saturation of T is the ideal

sat(T) � Ideal(T) : J∞,

where J =
∏

T∈T
ini(T ).

Let P be a finite basis for sat(T); the following relation is obvious

Ideal(T) ⊂ sat(T) = Ideal(P).

Theorem 2. Let T ⊂ K[x] be any triangular set. Then T is regular if and only
if

sat(T) = {P ∈ K[x] | prem(P,T) = 0}.
Proof. See [1] and [21, Sect. 6.2].

For any irreducible triangular set T, Theorem 5 below asserts that sat(T) is a
prime ideal. For any F ∈ K[x ], if prem(F,T) �= 0, then F �∈ sat(T) according to
Theorem 2 and thus sat(T) : F∞ = sat(T) by definition. This result is generalized
in the following lemma for regular sets.

Lemma 3. Let T be a regular set and F any polynomial in K[x]. If res(F,T) �= 0,
then sat(T) : F∞ = sat(T).

Proof. See [21, Sect. 6.2].

Proposition 1. Let [T,U] be a regular system in K[x] and V =
∏

U∈U
U . Then

Ideal(T) : V ∞ = sat(T). (4)

Proof. See [21, Sect. 6.2].

As a consequence of (4), we have Zero(Ideal(T) : V ∞) = Zero(sat(T)).
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Unmixed Decomposition

Refer to the zero decomposition (3) which provides a representation of the va-
riety V defined by P in terms of its subvarieties determined by Ti. As we have
mentioned, each Zero(Ti/ini(Ti)) is not necessarily an algebraic variety; it is
a quasi-algebraic variety. From the results above, we have seen that a corre-
sponding set of polynomials may be obtained by determining, from each Ti, a
saturation basis with Gröbner bases computation.

Theorem 3. Let P be a non-empty polynomial set in K[x] and {T1, . . . ,Te} a
W-characteristic series or a regular series of P. Then

Zero(P) =
e⋃

i=1

Zero(sat(Ti)). (5)

Proof. See [7] and [21, Sect. 6.2].

Let |S| denote the number of elements in the set S. The following result used
by Chou and Gao [3] provides a useful criterion for removing some redundant
subvarieties in the decomposition (5) without computing their defining sets.

Lemma 4. Let P and Ti be as in Theorem 3. If |Tj | > |P|, then

Zero(sat(Tj)) ⊂
⋃

1 ≤ i ≤ e
i �= j

Zero(sat(Ti));

thus Zero(sat(Tj)) can be deleted from (5).

Proof. As |Tj | > |P|, the dimension of Tj is smaller than n− |P|. By the affine
dimension theorem (see [3] or [21, Sect. 6.1]) and Theorem 4, Zero(sat(Tj)) is a
redundant component of Zero(P).

A triangular set T is said to be perfect if Zero(T/ini(T)) �= ∅ in some suitable
extension field of K. The following result is due to Gao and Chou [7].

Theorem 4. Let T be any triangular set in K[x]. If T is not perfect then sat(T)=
K[x]; if T is perfect then Zero(sat(T)) is an unmixed variety of dimension n−|T|.

Recall that any regular or irreducible triangular set T is perfect, so the variety
Zero(sat(T)) is unmixed of dimension n− |T|.

In (5), for each i let Pi be a finite basis for sat(Ti) which can be determined by
computing Gröbner bases according to Lemma 1 or by computing Ideal(Ti) : Jk

i

with k increasing from 1. If sat(Ti) = K[x ], then the constant 1 is contained in
(the Gröbner basis of) Pi. Let us assume that such Pi is simply removed. Thus,
a variety decomposition of the following form is obtained:

Zero(P) =
e⋃

i=1

Zero(Pi). (6)
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Apparently, Zero(P) = ∅ when e = 0 (i.e., all such Pi have been removed). By
Theorem 4, each Pi defines an unmixed algebraic variety.

Let Vi = Zero(Pi); then the decomposition (6) can be rewritten as

V = V1 ∪ · · · ∪Ve.

This decomposition may be contractible; that is, some variety may be a sub-
variety of another. Some of the redundant subvarieties may be easily removed
by using Lemma 4. The following lemma points out how to remove some other
redundant components.

Lemma 5. Let G be a Gröbner basis and P an arbitrary polynomial set in K[x].
If every polynomial in P has normal form 0 modulo G, then Zero(G) ⊂ Zero(P).

Proof. Since every polynomial in P has normal form 0 modulo G, Ideal(P) ⊂
Ideal(G). It follows that Zero(G) ⊂ Zero(P).

The method for decomposing an algebraic variety into unmixed components
explained above can be described in the following algorithmic form.

Algorithm UnmVarDec (Input: P; Output: Ψ). Given a non-empty polynomial
set P ⊂ K[x ], this algorithm computes a finite set Ψ of polynomial sets P1, . . . ,Pe

such that the decomposition (6) holds and each Pi defines an unmixed algebraic
variety.

U1. Compute a W-characteristic series or a regular series Φ of P and set Ψ←∅.
U2. While Φ �= ∅ do:

U2.1. Let T be an element of Φ and set Φ←Φ \ {T}. If |T| > |P| then go to
U2.

U2.2. Compute a finite basis for sat(T) according to Lemma 1 or 2, let it
be given as a Gröbner basis G and set Ψ←Ψ ∪ {G}.

U3. While ∃G,G∗ ∈ Ψ such that the normal form of G modulo G∗ is 0 for all
G ∈ G do:

Set Ψ←Ψ \ {G∗}.
The termination of the algorithm is obvious. The variety decomposition (6)

and the unmixture of each Zero(Pi) is guaranteed by Lemma 1 and Theorem 4.
Note that the unmixed decomposition (6) computed by Algorithm Unm-

VarDec is not necessarily irredundant. To remove all redundant components,
extra computation is required. The removal of redundant subvarieties by exam-
ining the containment relations among the corresponding Gröbner bases has the
drawback that one component can be removed only if the corresponding Gröbner
basis has already been computed. The following lemma provides another crite-
rion for removing redundant components.

Lemma 6. Let T be a regular set in K[x] and P a finite basis for sat(T). If P∗

is a polynomial set such that prem(P∗,T) = {0}, then Zero(P) ⊂ Zero(P∗).

Proof. Since T is regular and prem(P∗,T) = {0}, P∗ ⊂ sat(T) by Theorem 2. It
follows that

Zero(P) = Zero(sat(T)) ⊂ Zero(P∗).
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Irreducible Decomposition

Now we come to decompose an arbitrary algebraic variety defined by a polyno-
mial set into a family of irreducible subvarieties. This is done with an analogy
to the unmixed decomposition of Zero(P), requiring in addition that each trian-
gular set Ti in the zero decomposition is irreducible. Then any finite basis for
sat(Ti) will define an irreducible variety with any generic zero of Ti as its generic
point.

Note that any point ξ of an algebraic variety V over some extension of K,
which is such that every polynomial annulled by ξ vanishes on V, is called a
generic point of V. A generic zero of an irreducible triangular set T is a zero
(x̄1, . . . , x̄n) of T in which x̄i takes an indeterminate when xi �∈ lvar(T). An ideal
I ⊂ K[x ] is said to be prime if whenever F,G ∈ K[x ] and FG ∈ I, either F ∈ I
or G ∈ I.

Theorem 5. For any irreducible triangular set T ⊂ K[x], the ideal sat(T) is
prime.

Proof. Let ξ be a generic zero of T; then

prem(P,T) = 0 ⇐⇒ P (ξ) = 0

for any P ∈ K[x ] by Lemma 3 in [22]. Let FG ∈ sat(T). Then prem(FG,T) = 0
according to Theorem 2, so

F (ξ)G(ξ) = 0.

It follows that either F (ξ) = 0 or G(ξ) = 0; that is, either prem(F,T) = 0
or prem(G,T) = 0. By Theorem 2, we have either F ∈ sat(T) or G ∈ sat(T).
Therefore, sat(T) is prime.

When sat(T) is prime, its finite basis is called a prime basis of T and denoted
by PB(T). Then the variety defined by PB(T) should have any generic zero of T

as its generic point.

Proposition 2. Let T1 and T2 be two irreducible triangular sets in K[x] which
have the same set of generic zeros. Then sat(T1) = sat(T2).

Proof. See [21, Sect. 6.2].

Proposition 3. Let T1 and T2 be two triangular sets in K[x] with lvar(T1) =
lvar(T2), and T2 be irreducible. If prem(T2,T1) = {0}, then T1 is also irreducible
and has the same set of generic zeros as T2; thus sat(T1) = sat(T2).

Proof. See [21, Sect. 6.2].
Proposition 3 generalizes a result in [3]; in the same paper the following is

also proved.

Proposition 4. Let T1 and T2 be two triangular sets in K[x], of which T1 is
irreducible. If prem(T2,T1) = {0} and 0 �∈ prem(ini(T2),T1), then sat(T2) ⊂
sat(T1).
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Let each Ti in (5) be irreducible. Then we have the following zero decompo-
sition

Zero(P) =
e⋃

i=1

Zero(PB(Ti)).

Now each PB(Ti), which can be exactly determined by using Gröbner bases,
defines an irreducible algebraic variety and we have thus accomplished an irre-
ducible decomposition of the variety V defined by P.

This decomposition is not necessarily minimal. All the redundant subvarieties
can be removed by using Proposition 4 and Lemma 6 or 5, so one can get a
minimal irreducible decomposition.

The following algorithm is modified from UnmVarDec and terminates obvi-
ously. Its correctness follows from the above discussions and the remarks on early
removal of redundant components in Section 4 (that ensures the decomposition
minimal).

Algorithm IrrVarDec (Input: P; Output: Ψ). Given a non-empty polynomial set
P ⊂ K[x ], this algorithm computes a finite set Ψ of polynomial sets P1, . . . ,Pe

such that the decomposition (6) holds, it is minimal, and each Pi defines an
irreducible algebraic variety.

I1. Compute an irreducible W-characteristic series Φ of P and set Φ←{T ∈
Φ | |T| ≤ |P|}, Ψ←∅.

I2. While Φ �= ∅ do:
I2.1. Let T be an element of Φ of highest dimension and set Φ←Φ \ {T}.
I2.2. Compute a finite basis G for sat(T) according to Lemma 1 or 2 and set

Ψ←Ψ ∪ {G}.
I2.3. While ∃T∗ ∈ Φ such that prem(G,T∗) = {0} do:

Set Φ←Φ \ {T∗}.

4 Examples, Experiments and Techniques

Here examples and experiments are presented mainly to illustrate irreducible
decomposition which usually is more difficult.

Three Illustrative Examples
Example 1. Consider the polynomial set P = {P1, P2, P3}, where

P1 = −x2x3x4 − x4 − x1x3 + x2
2 − x2 − x1,

P2 = x2x
3
3 − 2x1x

2
3 + x2

3 + x1x2x3 − 2x2x3 + x1,

P3 = 2x2x3x4 + 2x4 + x2x
3
3−2x1x

2
3 + x2

3 + x1x2x3−2x2x3 + 2x1x3 + 2x2 + x1

are all irreducible over Q (the field of rational numbers). P can be decomposed
into three fine quasi-irreducible triangular systems [T, {x2, I}], [T′, {x1}], [T′′, ∅]
such that

Zero(P) = Zero(T/x2I) ∪ Zero(T′/x1) ∪ Zero(T′′),
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where

T =




x2

2 − x1,

x2x
3
3 − 2x1x

2
3 + x2

3 + x1x2x3 − 2x2x3 + x1,

Ix4 + x1x2x3 + x1



 ,

T′ = [x2
2 − x1, I], T′′ = [x1, . . . , x4]

and I = x1x3 + x2.
Let the three polynomials in the above T be denoted T1, T2, T3 respectively.

T is not regular because res(res(I, T2, x3), T1, x2) = 0. In fact, T is reducible: one
may verify that T2 has an irreducible factorization

T2
.=
x2

x1
I(x3 − x2)2

over Q(x1, x2) with x2 having minimal polynomial T1. Therefore,

Zero(T/x2I) = Zero([T1, x3 − x2, T3]/x2I) = Zero(T∗/x2I),

where
T
∗ = [T1, x3 − x2, x4 + x2].

It is easy to see that both T′ and T′′ are irreducible. So we have, after applying
Theorem 1 and removing a redundant component, an irreducible zero decompo-
sition of the form

Zero(P) = Zero(T∗) ∪ Zero(T′/x1).

The three polynomials in T∗ all have constant initials, so T∗ defines by itself
an irreducible algebraic variety. To determine a prime basis of T′, we compute
the Gröbner basis G of T′∪{zx1−1} over Q under plex with x1 ≺ · · · ≺ x4 ≺ z.
It is found that

G = T
′ ∪ {x2x3 + 1, z − x2

3},
so the prime basis wanted is

P
′ = T

′ ∪ {x2x3 + 1}.
Hence we obtain finally the following irreducible decomposition of the variety
defined by P

Zero(P) = Zero(T∗) ∪ Zero(P′).

Finally we remark that the triangular set T′ is irreducible, even though the
second polynomial I in T′ may be written as I = x2(x2x3 + 1) over Q(x1, x2)
with x2 having minimal polynomial x2

2−x1. Let T̄ = [x2
2−x1, x2x3+1]. It follows

from the factorized from of I and Theorem 1 that

Zero(T′/x1) = Zero(T̄/x2) = Zero(T̄);

the last equality holds because x2x3 + 1 = 0 implies that x2 �= 0. Therefore, P′

can be replaced by T̄ (in fact, P′ is a plex Gröbner basis of T̄). Simplifications of
this kind to avoid the computation of saturation bases can be achieved by some
other algorithms.
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Example 2. Let the algebraic variety V be defined by P = {P1, P2, P3}, where

P1 = 3x3x4 − x2
2 + 2x1 − 2,

P2 = 3x2
1x4 + 4x2x3 + 6x1x3 − 2x2

2 − 3x1x2,

P3 = 3x2
3x4 + x1x4 − x2

2x3 − x2.

With x1 ≺ · · · ≺ x4, P may be decomposed into 2 irreducible triangular sets T1

and T2 such that

Zero(P) = Zero(T1/I) ∪ Zero(T2/x2),

where

T1 = [T1, T2, Ix4 − 2x2
2 − 3x1x2],

T2 = [x1, 2x3 − x2, 3x2x4 − 2x2
2 − 4];

T1 = 2x4
2−12x2

1x
3
2+9x1x

3
2−9x4

1x
2
2+8x1x

2
2−8x2

2+24x3
1x2−24x2

1x2+18x5
1−18x4

1,

T2 = Ix3 − x2
2;

I = 2x2 + 3x2
1.

To obtain an irreducible decomposition of V, we determine the prime bases of
T1 and T2 by computing the respective Gröbner bases G1 and G2 of

T1 ∪ {zI − 1} and T2 ∪ {x2z − 1}
according to Lemma 1. The Gröbner bases may be found to consist of 8 and 4
polynomials respectively. Let Vi = Gi ∩ K[x1, . . . , x4] and Vi = Zero(Vi) for
i = 1, 2. We have

V1 =





T1,

27x4
1x3−27x3

1x3+2x3
2−15x2

1x
2
2+9x1x

2
2+8x1x2−8x2+12x3

1−12x2
1,

T2,

12x1x
2
3 − 12x2

3 − 9x2
1x3 − 2x1x

2
2 + 3x2

2 + 4x2
1 − 4x1,

x1x4 − 2x1x3 + 2x3 − x2,

x2x4 + 3x2
1x3 − 3x1x3 − x2

2,

P1





and V2 = T2 such that V = V1 ∪ V2. One can check with ease that this
decomposition is minimal.

Example 3. As a more complicated example, consider the algebraic variety de-
fined by the following five polynomials

P1 = x4x2 + x1 + x2x6 + 3x5,

P2 = 54x4x5 + 9x4x2x6 − 9x1x6 − 9x2x7 − 18x3x2 − 2x3
2,

P3 = 18x3x5−9x2
4x5+3x3x2x6+3x4x6x1+3x4x7x2−3x1x7−3x3x1−2x2

2x1,

P4 = 3x3x1x6 + 3x3x2x7 + 3x4x1x7 − 18x4x3x5 − 2x2x
2
1,

P5 = 9x3x1x7 − 27x2
3x5 − 2x3

1.
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Let P = {P1, . . . , P5} and the variable ordering be ω1 : x1 ≺ · · · ≺ x7. Un-
der ω1, P can be decomposed into 9 irreducible triangular sets T1, . . . ,T9 such
that

Zero(P) =
9⋃

i=1

Zero(Ti/ini(Ti)).

For i = 6, . . . , 9, the triangular set Ti contains more than 5 polynomials and thus
need not be considered for the variety decomposition by Lemma 4. Let Vi be
the prime basis of Ti under the ordering ω1 for i = 3, 4, 5. Obviously T3 already
defines an irreducible variety, so V3 = T3. It remains to determine the prime
bases from T1,T2,T4 and T5 according to Lemma 1 or 2. One may find that
V4 = T4 and V5 is the same as the set obtained by replacing the last polynomial
in T5 with

9x7 + 9x4x6 − 2x2
2.

A prime basis of T1 under ω1 contains 20 polynomials. To reduce the number of
elements, we compute a Gröbner basis of this prime basis with respect to another
variable ordering ω2 : x4 ≺ x2 ≺ x6 ≺ x3 ≺ x1 ≺ x7 ≺ x5. The new basis V1

consists of 10 polynomials as follows

V1 =





81x3
3 + 72x2

2x
2
3 + 16x4

2x3 + 90x2
4x

2
2x3 + 4x2

4x
4
2 + 18x4

4x
2
2,

6x4x
2
2x1 + 9x3

4x1 − 9x2x
2
3 − 4x3

2x3 + 9x2
4x2x3 + 2x2

4x
3
2 + 9x4

4x2,

9x3x1 + 4x2
2x1 + 9x2

4x1 + 18x4x2x3 + 2x4x
3
2 + 9x3

4x2,

x2
1 + x4x2x1 − x2

2x3,

9x3
4x7 − 6x4x2x6x1 − 12x2

4x2x1 + 9x6x
2
3 + 18x4x

2
3 + 4x2

2x6x3

− 9x2
4x6x3 + 8x4x

2
2x3 − 2x2

4x
2
2x6 − 2x3

4x
2
2,

9x2x7 + 9x6x1 + 18x4x1 + 18x2x3 + 9x4x2x6 + 2x3
2 + 18x2

4x2,

9x3x7 + 9x2
4x7 − 4x2x6x1 − 8x4x2x1 + 18x2

3 − 9x4x6x3 + 2x2
2x3

− 2x4x
2
2x6 − 2x2

4x
2
2,

9x1x7 − 6x2
2x1 − 18x2

4x1 + 9x2x6x3 − 18x4x2x3 − 4x4x
3
2 − 18x3

4x2,

81x2
7 + 81x4x6x7 − 162x2

4x7 + 108x2x6x1 + 216x4x2x1 − 324x2
3

− 81x2
6x3 + 162x4x6x3 − 72x2

2x3 + 54x4x
2
2x6 − 4x4

2 + 36x2
4x

2
2,

P1





.

As for T2, the difficult case, let Ti denote the ith polynomial of T2 and Ii the
initial of Ti for 1 ≤ i ≤ 5. The non-constant initials are

I2, I3, and I4 = I5 = x2.

Thus, it is necessary to determine a prime basis from T2 by computing a Gröbner
basis of the enlarged polynomial set, for instance, T2∪{z1I4−1, z2I3−1, z3I2−1}
or T2∪{zI2I3I4−1}. Nevertheless, the Gröbner basis cannot be easily computed
in either case. We have tried some of the most powerful Gröbner bases packages
without success. For this reason, we normalize T2 to get another triangular
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set T∗
2 (see [21, Sect. 5.2] for the details of normalization): it is obtained from T2

by replacing T2 and T3 respectively with

T ∗
2 = −4x3

1x2x4 + 81x4
3 + 9x2

2x
3
3 − 9x2

1x
2
3 + 6x2

1x
2
2x3 − 2x4

1,

T ∗
3 = 972x7

1x5 + 729(2x4
2 + 27x2

1)x
2
2x

5
3 + 81(2x8

2 + 9x2
1x

4
2 − 81x4

1)x
4
3

− 648x2
1(x

4
2 + 9x2

1)x
2
2x

3
3 + 9x2

1(8x
8
2 + 180x2

1x
4
2 + 81x4

1)x
2
3

− 36x4
1(2x

4
2 + 27x2

1)x
2
2x3 + 2x4

1(4x
8
2 + 90x2

1x
4
2 + 243x4

1).

T∗
2 and T2 have the same set of generic zeros, so the prime bases constructed from

them define the same irreducible algebraic variety. T∗
2 possesses the property that

the initials of its polynomials only involve the parameters x1 and x2.
A prime basis of T∗

2 can be easily determined by computing the correspond-
ing Gröbner basis with respect to the variable ordering ω1 or ω2 according to
Lemma 1. The basis under ω2 contains 9 elements and is as follows

V2 =





81x3
4x

2
6+16x4

2x6+108x2
4x

2
2x6+324x4

4x6+20x4x
4
2+144x3

4x
2
2+324x5

4,

144x2
2x3 + 729x2

4x3 + 81x3
4x6 + 16x4

2 + 144x2
4x

2
2 + 405x4

4,

4x6x3 + 5x4x3 + x2
4x6 + x3

4,

4x2x1 + 27x4x3 + 2x4x
2
2 + 9x3

4,

18x6x1 + 36x4x1 − 18x2x3 + 9x4x2x6 − 2x3
2,

972x4x3x1 + 324x3
4x1 − 1296x2x

2
3 − 405x2

4x2x3 + 81x3
4x2x6 + 16x5

2

+ 108x2
4x

3
2 + 243x4

4x2,

144x2
1 + 1296x2

3 − 81x2
4x3 − 81x3

4x6 − 16x4
2 − 144x2

4x
2
2 − 405x4

4,

6x7 + 18x3 + 3x4x6 + 2x2
2 + 12x2

4,

P1





.

It is easy to verify that both Zero(V4) and Zero(V5) are subvarieties of Zero(V1).
Therefore, the variety defined by P is decomposed into three irreducible subva-
rieties defined by V1,V2 and V3. Symbolically,

Zero(P) = Zero(V1) ∪ Zero(V2) ∪ Zero(V3),

where Zero(Vi) is irreducible for i = 1, 2, 3.

Experimental Results

We first provide timing statistics for irreducible variety decomposition on 22
examples using the three zero decomposition algorithms reviewed in Section 2.
The first 16 examples are given in [15]. Here are added to our test set the last
six examples, for which the defining polynomials of the varieties as well as the
variable orderings used for the computation are listed in the appendix.

The heading entries Ritt-Wu, Seidenberg refined and Subresultant-based in
Table 1 indicate the respective zero decomposition algorithms used for the ir-
reducible variety decomposition. The experiments were made with Maple V.5
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running on an i686 under Linux 2.0.36 at LIP6, Université Paris VI. The tim-
ings are given in CPU seconds and include the time for garbage collection. The
symbol >2000 indicates that the computation was interrupted manually after
about 2000 CPU seconds, and the cases marked with *** were rejected by Maple
for “object too large.”

Ex Ritt-Wu Seidenberg refined Subresultant-based

1 .05 .02 .02
2 .52 .45 .36
3 1.01 .69 .66
4 .43 .11 .07
5 .93 .66 2.43
6 2.03 11.73 113.06
7 .63 .49 .41
8 9.53 1.15 2.16
9 17.19 4.92 4.8
10 >2000 >2000 >2000
11 3.81 5.06 ***
12 7.58 2.38 7.05
13 17.11 5.62 8.35
14 33.54 16.64 19.68
15 29.47 5.56 4.18
16 *** *** ***
17 18.35 1.54 .72
18 >2000 >2000 >2000
19 *** 44.39 31.74
20 13.91 6.96 4.45
21 >2000 >2000 >2000
22 >2000 >2000 >2000

Table 1. Irreducible variety decomposition for 22 examples

From Table 1 one sees that irreducible variety decomposition using algo-
rithms based on Seidenberg’s elimination idea and s.r.s. is faster than that using
characteristic sets for most of the complete test cases. Example 6 is one of the
few notable examples for which our algorithms are slower than Ritt-Wu’s for
the irreducible zero decomposition as already pointed out in [18]. The differ-
ence of computing times with the three zero decomposition algorithms is often
not significant because the involved saturation bases computation may take a
large part of the total computing time. It is also possible that computing the
saturation bases from the triangular sets requires more time than that from the
ascending sets. This actually happens with Example 9 (for which the irreducible
zero decomposition by either algorithm does not take much time) in Maple V.3.

As we have explained previously, there are two different ways for computing
the prime/saturation bases of triangular sets. There are also a few variants for
the algorithms which may affect the computation. Let T = [T1, . . . , Tr] be an
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irreducible triangular set in K[x ], F1, . . . , Ft be all the distinct irreducible factors
(over K) of

∏r
i=1 ini(Ti), and F = F1 · · ·Ft. We consider the following four

variants for the construction of a prime basis V of T:

V1. Compute the Gröbner basis G of T∪{zF−1} with respect to plex1 with x1 ≺
· · · ≺ xn ≺ z and take G ∩ K[x ] for V, where z is a new indeterminate;

V2. Compute the Gröbner basis G of T ∪ {z1F1 − 1, . . . , ztFt − 1} with respect
to plex with x1 ≺ · · · ≺ xn ≺ z1 ≺ · · · ≺ zt and take G ∩ K[x ] for V,
where z1, . . . , zt are new indeterminates;

V3. Compute the generating sets Vk for Ideal(T) : F k, k=1, 2, . . ., until Ideal(T) :
F k = Ideal(T) : F k+1 and take the last Vk for V, where the quotient ideals
are computed using plex Gröbner bases with x1 ≺ · · · ≺ xn ≺ z according
to what is explained in the paragraph after Lemma 2;

V4. Normalize T to obtain an equivalent triangular set T̄ (see [21, Sect. 5.2] and
Example 3) and then compute a prime basis of T̄ according to V2 above.

The following table shows the computational effect of the four variants.

Ex V1 V2 V3 V4
3 .41 .46 1.51 .24
9 11.18 11.98 63.11 5.18
13 3.09 — 64.5 2.43
14 16.19 11.22 246.62 12.24
18 >2000 >2000 >2000 >2000
19 109.64 23.45 >2000 >2000
20 2.6 — 23.49 .79
21 >2000 >2000 >2000 >2000
22 >2000 >2000 >2000 >2000

Table 2. Variants for prime bases computation

The dash — in Table 2 denotes the cases in which the variant V2 coincides
with V1 (i.e., t = 1). It occurs that the method V3 performs worst for these
examples. For the two better variants V2 and V4, it is not evident which one
is superior to the other. An additional message is that, in Maple V.3 running
on an Alpha station 600 at MMRC, Academia Sinica, the Gröbner bases were
computed in 602.62 and 1371.7 CPU seconds respectively with V1 and V2 for
Example 18, and in 201.68 CPU seconds with V4 for Example 21. This makes
it even difficult to predetermine which of the three variants V1, V2 and V4 to
take for a concrete problem.

As the computation of saturation bases represents a major time-consuming
step, it is of interest to try other Gröbner bases implementations for our test ex-
1 We have tried the new Groebner package with the elimination term order lexdeg in
Maple V.5. For most of our examples, notably Ex 9 and Ex 19, the computation
using lexdeg is much slower than that using plex.
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amples. We did so using the Gröbner basis packages in Reduce 3.4 and Risa/Asir2

in comparison with grobner in Maple V.2, and the Gb package of J.-C. Faugère in
comparison with Groebner in Maple V.5. For Example 14, 14 Gröbner bases have
to be computed and the variety is decomposed into 6 irreducible components.
The detailed timings obtained on one and the same machine at ISIS in August
1993 for Maple V.2, Reduce 3.4 and Risa/Asir, and on the above-mentioned i686
at LIP6 for Maple V.5 and Gb 3.1156 are exhibited below.

No 1 2 3 4 5 6 7
Maple V.2 7.32 11.55 5.12 5.83 23.08 3.43 27.17
Reduce 3.4 .58 1.92 .51 .73 1.72 .32 9.08
Risa/Asir 1.5 2.91 .78 1.4 4.89 .5 7.74
Maple V.5 .74 .59 .37 .53 3.08 .22 .77
Gb 3.1156 .03 0 .01 0 .09 .01 .02

No 8 9 10 11 12 13 14
Maple V.2 4.75 3.03 3.07 121.93 4.08 2.77 3698.38
Reduce 3.4 .38 .23 .52 14.65 .32 .38 944.18
Risa/Asir .75 .56 .69 14.97 .74 .74 243.76
Maple V.5 .32 .19 .17 6.31 .22 .23 4.31
Gb 3.1156 .01 .02 .01 .05 0 .01 .02

Table 3. Gröbner bases computation for Example 14

The remarkable difference of timings shown in Table 3 was somewhat to our
surprise, and indicates the inefficiency of the Gröbner basis packages in Maple
and the interest in implementing our decomposition algorithms using another
computer algebra system or a low-level programming language for effective ap-
plications. We are still working with Maple mainly because of our experience
and the existence of an elimination library we have developed. Although Gb
took little time to compute the 14 Gröbner bases for Example 14, it did not
succeed in computing the two Gröbner bases needed for Example 18. We are
going to try Faugère’s FGb, a new version of Gb, and other implementations of
Gröbner bases such as those in Magma and CoCoA for large examples.

Techniques for Practical Efficiency

The algorithms for variety decomposition discussed in the previous sections em-
ploy several time-consuming subalgorithms. Improvements on each subalgorithm
have positive consequence for the overall performance. Roughly speaking, the
2 This is an experimental system developed by the computer algebra group at ISIS,
Fujitsu Laboratories Limited, Japan. M. Noro from this group informed the author
that the computing time with Risa/Asir in Table 3 may be much reduced by setting
some switches on. Moreover, by using another C implementation of a Gröbner basis
package in Risa/Asir, the 14 Gröbner bases can be computed in 3 CPU seconds.
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main algorithms consist of two essentially independent steps: one computes the
zero decomposition and the other constructs the saturation bases. If the zero
decomposition cannot be completed, the variety decomposition fails. When the
first step is successful, we come to the second step of constructing the saturation
bases. Two different algorithms with variants for this step have been explained
in Section 3. Our experiments have shown the dependence of their efficiency
on problems and the potential of using other Gröbner packages. The construc-
tion of saturation bases is unnecessary in some cases, for instance, when in (1)
e = 1 and T1 is irreducible (and thus the given variety is irreducible), or all Ti

are of dimension 0, or all the initials of the polynomials in Ti are constants.
This happened for about half of the cases in our test. Construction of the prime
bases requires expensive Gröbner bases computation; for this we simply use the
grobner/Groebner packages in Maple without modification. For four of the test
examples we failed in computing the Gröbner bases within 2000 CPU seconds
for each or because of “object too large.”

For zero decomposition, we continue studying algorithmic and implementa-
tional strategies to speed up each substep. Some of the strategies and techniques
have been discussed in the papers where the zero decomposition algorithms are
proposed and experimented. In what follows, we mention a few removing tech-
niques, some of which have not been given before.

Early Removal of Redundant Components. The zero decomposition me-
thods reviewed in Section 2 may produce many redundant branches/components.
It is always desirable to remove such redundant components as early as possible.
In fact, there are a number of techniques for doing so, see [3,7,15,17,18] for
example. One of the most effective techniques suggested by Chou and Gao [3,7]
for variety decomposition is the application of the affine dimension theorem
(i.e., Ti is redundant if |Ti| > |P| = s, see Lemma 4) when a W-characteristic
series Ti of P is computed. For being more efficient, we have used this technique
dynamically (i.e., whether the final Ti will contain more than s polynomials
is examined during the computation of Ti) in the implementation of our zero
decomposition algorithms based Seidenberg’s idea and s.r.s. This has taken the
advantage of top-down elimination: for a triangular system [T,U], it is known
that either |T| > s or Zero(T/U) = ∅ as soon as the last s polynomials of T have
been obtained and at least one more polynomial of T can be obtained (it is the
case when there still exist polynomials for elimination to produce T). In other
words, a redundant triangular system may be removed before it is completely
computed. This technique is particularly useful for removing such redundant
triangular systems [T,U] of lower dimension for which the first few polynomials
in T are large and difficult to compute.

For another technique, consider the last step U3 of UnmVarDec which aims at
removing some redundant components. This step does not appear in IrrVarDec
due to the following observation. Since T taken from Ψ in step I2.1 has the
highest dimension, the remaining triangular sets T

∗ in Ψ are all those whose di-
mensions are not higher than that of T; thus Zero(sat(T∗)) are all the candidates
of subvarieties of Zero(sat(T)). After the saturation basis G of T is computed in
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step I2.2, we immediately compute prem(G,T∗) in step I2.3, and remove such T∗

when prem(G,T∗) = {0} is verified. Therefore, in the case where some T∗ is suc-
cessfully removed, its saturation basis must not have been computed.

This simple technique deducts the time for computing the prime bases that
are redundant, and does not lead to any additional cost. The redundancy occurs
often for examples from geometry theorem proving where the corresponding va-
rieties are of higher dimension. We applied the technique to Example 14 and
got a further surprise. Among the 14 Gröbner bases, 8 (including the one whose
computation takes much time) correspond to redundant subvarieties and need
not be computed according to this technique. The previous total decomposition
time 2663.2 CPU seconds (with Maple V.2 on a SUN SparcServer 690/51) is
reduced to 113.5 seconds. In other words, the technique speeds up the decom-
position by a factor of 23.

However, the above-explained technique cannot be employed when the pseu-
do-division verification is replaced by the normal form reduction.

Removal of Computed Subvarieties. Now we describe a technique to re-
move a subvariety from the given variety as soon as the subvariety is computed.
This is similar to the case of polynomial factorization in which an irreducible
factor can readily be removed from the polynomial being factorized when the
factor is found. However, the removal of subvarieties appears much more dif-
ficult computationally. The removing technique can be incorporated into the
decomposition algorithms according to the following theorem.

Theorem 6. Let P and Q = {F1, . . . , Ft} be two polynomial sets in K[x] with
Zero(Q) ⊂ Zero(P) and I be the ideal generated by

P ∪ {zF1 + · · ·+ ztFt − 1} in K[x, z] (7)

or by
P ∪ {z1F1 + · · ·+ ztFt − 1} in K[x, z1, . . . , zt], (8)

where z, z1, . . . , zt are new indeterminates. Then

Zero(P) = Zero(Q) ∪ Zero(I ∩ K[x]).

Proof. Consider the case in which

I = Ideal(P ∪ {zF1 + · · ·+ ztFt − 1}).
Let x̄ ∈ Zero(P). For any P ∈ I ∩ K[x ], there exists a polynomial Q ∈ K[x , z]
such that

P −Q(zF1 + · · ·+ ztFt − 1) ∈ Ideal(P) ⊂ K[x , z].
Hence

P (x̄) = Q(x̄, z)[zF1(x̄) + · · ·+ ztFt(x̄)− 1] (9)
for arbitrary z. Suppose that x̄ �∈ Zero(Q). Then there exists some j such
that Fj(x̄) �= 0. So there is a z̄ ∈ K̃ such that z̄F1(x̄) + · · · + z̄tFt(x̄) − 1 = 0.
Plunging z̄ into (9), we get P (x̄) = 0. Therefore, Zero(P) ⊂ Zero(Q) ∪ Zero(I ∩
K[x ]).
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To show the opposite, let x̄ ∈ Zero(I ∩K[x ]). Obviously, for z ∈ K[x , z] and
any P ∈ P

Zero(P) ⊂ Zero(P (zF1 + · · ·+ ztFt)).

By Hilbert’s Nullstellensatz, there exists an exponent q > 0 such that

P q(zF1 + · · ·+ ztFt)q ∈ Ideal(P) ⊂ K[x , z].

It follows that

P q + P q[(zF1 + · · ·+ ztFt)q−1 + (zF1 + · · ·+ ztFt)q−2 + · · ·+ 1]
· (zF1 + · · ·+ ztFt − 1) ∈ Ideal(P) ⊂ K[x , z],

so that P q ∈ I. Since P does not involve z, P q ∈ I ∩ K[x ]. Hence, P q(x̄) = 0
and thus P (x̄) = 0. This proves that Zero(I ∩ K[x ]) ⊂ Zero(P).

The case in which I = Ideal(P∪{z1F1+ · · ·+ztFt−1}) is proved analogously,
observing that if F1(x̄), . . . , Ft(x̄) are not all 0, then there exist z̄1, . . . , z̄t such
that z̄1F1(x̄) + · · · + z̄tFt(x̄) − 1 = 0, and P q(z1F1 + · · · + ztFt)q ∈ Ideal(P) ⊂
K[x , z1, . . . , zt] for some integer q > 0.

This theorem suggests a way to remove any subvariety Zero(Q) from the
given variety Zero(P) by determining a finite basis H for the ideal I ∩ K[x ].
The latter can be done, for instance, by computing a Gröbner basis of (7) or
of (8) with respect to plex determined by xj ≺ z or xj ≺ zl together with
its elimination property. Thus, decomposing Zero(P) is reduced to decomposing
Zero(Q) and Zero(H). The author has tested this technique. Nevertheless, the
Gröbner bases computation in this case is too inefficient and we had no gain
from the experiments. One can make use of the technique only when a more
effective procedure for determining the finite bases is available.

In fact, the removal of Zero(Q) from Zero(P) corresponds to computing the
quotient Ideal(P) : Ideal(Q). The latter can be done by a possibly more efficient
algorithm described in [5, pp. 193–195].

Applications

Decomposing given algebraic varieties into irreducible or unmixed components
is a fundamental task in classical algebraic geometry and has various applica-
tions in modern geometry engineering. Among such applications we can mention
two: one in computer-aided geometric design where the considered geometric
objects are desired to be decomposed into simpler subobjects and the other in
automated geometry theorem proving where the configuration of the geometric
hypotheses needs to be decomposed in order to determine for which components
the geometric theorem holds true.

An irreducible decomposition of the algebraic variety defined by P corre-
sponds to a prime decomposition of the radical of the ideal I generated by P.
From the latter a primary decomposition of I can be constructed, see [6,13] for
details. This points out an application of variety decomposition to computational
polynomial ideal theory.
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In various mathematical problems such as the qualitative study of differen-
tial equations (where Example 3 comes), necessary and sufficient conditions are
often established and given as polynomial equalities in different ways and by dif-
ferent researchers. Variety decomposition provides an effective way to examine
the relationships such as equivalence and containment among different sets of
conditions.
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Appendix

List of Examples 17–22

In the following list, P is the polynomial set that defines the algebraic variety to
be decomposed and ω is the variable ordering used for the computation. These
examples were chosen quite randomly yet with moderate difficulty so that the
algorithms under discussion can be tested.

Example 17. Let P = {x31− x6 − x− y, x8 − z, x10− t} with ω: t ≺ z ≺ y ≺ x.
The variety defined by P is irreducible and is of dimension 1 in the 4-dimensional
space. The set of polynomials is taken from a paper by C. Traverso and L. Donati
(Proc. ISSAC ’89, pp. 192–198).

Example 18. Let P = {P1, . . . , P4}, where

P1 = (x− u)2 + (y − v)2 − 1,
P2 = v2 − u3,

P3 = 2v(x− u) + 3u2(y − v),
P4 = (3wu2 − 1)(2wv − 1)
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with ω: x ≺ y ≺ u ≺ v ≺ w. The irreducible decomposition of the variety defined
by P could not be completed within 2000 CPU seconds. The set of polynomials
was communicated by P. Vermeer (Department of Computer Science, Purdue
Univ., USA).

Example 19. Let P = {P1, P2, P3}, where

P1 = (x1 − y1)2 + (x2 − y2)2 − (x′
1 − y′1)

2 − (x′
2 − y′2)

2,

P2 = (x′
1 − ζ1)2 + (x′

2 − ζ2)2 − (x1 − z1)2 − (x2 − z2)2,
P3 = (y′1 − ζ1)2 + (y′2 − ζ2)2 − (y1 − z1)2 − (y2 − z2)2

with ω: x1 ≺ x2 ≺ y1 ≺ y2 ≺ z1 ≺ z2 ≺ x′
1 ≺ x′

2 ≺ y′1 ≺ y′2 ≺ ζ1 ≺ ζ2.
The variety defined by P may be decomposed into two irreducible components.
The set of polynomials is taken from a paper by J. Pfalzgraf (Ann. Math. Artif.
Intell. 13: 173–193).

Example 20. Let P = {P1, . . . , P6}, where

P1 = 2x1 − 1,
P2 = x2

2 + x2
1 − 1,

P3 = x2
4 + x2

3 − u2
2 − u2

1,

P4 = 2u2x4 + 2u1x3 − u2
2 − u2

1,

P5 = x2
6 + x2

5 − 2x5 − u2
2 − u2

1 + 2u1,

P6 = 2u2x6 + 2u1x5 − 2x5 − u2
2 − u2

1 + 1

with ω: u1 ≺ u2 ≺ x1 ≺ · · · ≺ x6. The variety defined by P may be decomposed
into 9 irreducible components. The set of polynomials comes from an algebraic
formulation of Steiner’s theorem given in a paper by the author (Proc. CADE-12,
LNAI 814, pp. 386–400).

Example 21. Let P = {P1, . . . , P6}, where

P1 = (3u2
1 − 1)x2 + u1(u2

1 − 3)x1 − u1(3u2
1 − 1),

P2 = (3u2
2 − 1)x2 + u2(u2

2 − 3)x1 − u2(3u2
2 − 1),

P3 = −x1F1x
3
4 + 3(F2x3 + x1F3)x2

4

+ 3[x1F1x
2
3 − 2(x4

2 − u2x
3
2 − 2u1x

3
2 − u2x

2
1x2 − 2u1x

2
1x2 + F4)x3

− x1(x4
2 + 2x2

1x
2
2 + u2

1u2x2 − F4)]x4

− F2x
3
3 − 3x1F3x

2
3 + 3(x5

2 + 2x2
1x

3
2 + x4

1x2 − u2
1x

2
1x2 − F5)x3

− x1(2u1u2x
3
2 + u2

1x
3
2 − 2u2

1u2x
2
2 + 2u1u2x

2
1x2 − F5),

P4 = −(x2 + u1x1 − u1)x4 + (u1x2 − x1 − u2
1)x3 + u1x2 + u2

1x1 − u2
1,

P5 = −(x2 + u2x1 − u2)x6 + (u2x2 − x1 − u2
2)x5 + u2x2 + u2

2x1 − u2
2,

P6 = −(x1G1x4 −G2x3 − x1G3)x6 + (G2x4 + x1G1x3 −G4)x5

+ x1G3x4 −G4x3 − x1(u2x
2
2 + u1x

2
2 − 2u1u2x2 + u2x

2
1 + u1x

2
1)
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with

F1 = 3x2
2 − 2u2x2 − 4u1x2 − x2

1 + 2u1u2 + u2
1,

F2 = x3
2 − u2x

2
2 − 2u1x

2
2 − 3x2

1x2 + 2u1u2x2 + u2
1x2 + u2x

2
1 + 2u1x

2
1 − u2

1u2,

F3 = 2x3
2 − u2x

2
2 − 2u1x

2
2 + 2x2

1x2 − u2x
2
1 − 2u1x

2
1 + u2

1u2,

F4 = 2u1u2x
2
2 + u2

1x
2
2 − u2

1u2x2 − x4
1 + 2u1u2x

2
1 + u2

1x
2
1,

F5 = u2x
4
2 + 2u1x

4
2 − 2u1u2x

3
2 − u2

1x
3
2 + 2u2x

2
1x

2
2 + 4u1x

2
1x

2
2 + u2

1u2x
2
2

− 2u1u2x
2
1x2 − 2u2

1x
2
1x2 + u2x

4
1 + 2u1x

4
1 − u2

1u2x
2
1,

G1 = 2x2 − u2 − u1,

G2 = x2
2 − u2x2 − u1x2 − x2

1 + u1u2,

G3 = x2
2 + x2

1 − u1u2,

G4 = x3
2 − u2x

2
2 − u1x

2
2 + x2

1x2 + u1u2x2 − u2x
2
1 − u1x

2
1

and ω: u1 ≺ u2 ≺ x1 ≺ · · · ≺ x6. The variety defined by P may be decom-
posed into 12 irreducible components (in Maple V.3 on an Alpha station 600)
when the technique of normalization is used. The set of polynomials comes from
an algebraic formulation of Morley’s theorem given in a paper by the author
(Proc. CADE-12, LNAI 814, pp. 386–400).

Example 22. Let P = {P1, . . . , P7}, where

P1 = 4u2
1u

4
2x

2
1 − (2u2

2u3 + 2u2
1u

2
2 − E)(2u2

1u
2
2u3 − 2u2

2 + u2
1E),

P2 = 4u4
2(2u

2
1x1 − 2u2

1u3 −A)x2
2 + C2[4Ix2 − 2u2

1D
2x1 − F ],

P3 = −4u4
2(2u2

1x1 + 2u2
1u3 + A)x2

3 + C2[4Ix3 + 2u2
1D

2x1 − F ],
P4 = u1u2x4 − u2

1u
2
2 + 1,

P5 = u1u2x5 + u2
2 − u2

1,

P6 = 2u2
1[u

2
2(x5 + x4)− CD]x6 − u2

1E(x5 + x4) + BCD,

P7 = Ix7 − [2u2
1u

2
2x5 − (u2

2 − u2
1)(u

2
1u

2
2 + 1)]x6 + u2

1Ex5 − u4
2 + u4

1

with

I = (u2
2 − u2

1)(u2
1u

2
2 − 1), F = 2[u2

1u
4
2 − 2(B + u2

1)u2
2 + u2

1]u3 −AD2;

A = u4
1 − 1, B = u4

1 + 1, C = u2
2 − 1, D = u2

2 + 1, E = u4
2 + 1

and ω: u1 ≺ u2 ≺ u3 ≺ x1 ≺ · · · ≺ x7. The irreducible decomposition of the
variety defined by P could not be completed within 2000 CPU seconds. The set of
polynomials comes from an algebraic formulation of Thébault-Taylor’s theorem
given in Yang and Zhang (1994).
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Abstract. Getting accurate construction of tridimensional CAD mod-
els is a field of great importance: with the increasing complexity of the
models that modeling tools can manage nowadays, it becomes more and
more necessary to construct geometrically accurate descriptions. Maybe
the most promising technique, because of its full generality, is the use of
automatic geometric tools: these can be used for checking the geomet-
rical coherency and discovering geometrical properties of the model. In
this paper, we describe an automatic method for constructing the model
of a given geometrical configuration and for discovering the theorems of
this configuration. This approach motivated by 3D modeling problems
is based on characteristic set techniques and generic polynomials in the
bracket algebra.

1 Introduction

The construction of tridimensional CAD models is of growing importance: with
the increase of power of the computers and networks, it is now a common ex-
perience to navigate within a virtual 3D world. One of the biggest challenges
to obtain the best navigation is to get models that are both photo-realistic and
accurate. One particular technique, derived from computer vision, makes possi-
ble the construction of a 3D model of a scene, starting from simple pictures of
it [10,9] (Fig. 1).

In order to achieve this result, several stages are necessary: first, special image
features (i.e. corner points) must be extracted from the pictures and matched
across the various views. These matched features are then used to calibrate the
cameras, which consists in finding the parameters defining their states (such as
their focal distances) and positions in the Euclidean space. Once the cameras are
calibrated, reconstructing a 3D feature is just a matter of triangulation provided
that the object is visible in at least two pictures. Using such a scheme, it is quite
easy to obtain a realistic 3D model since the photometric information of the
pictures can be used to augment the pure geometric model.

However, in most cases, these techniques are based only on the viewing ge-
ometry (i.e. the geometry of light rays captured by the cameras). Since most
human made objects (e.g. buildings, tools, . . . ) are usually geometrically struc-
tured (coplanar or aligned points, orthogonal or parallel lines, . . . ), a very rich

X.-S. Gao, D. Wang, and L. Yang (Eds.): ADG’98, LNAI 1669, pp. 207–232, 1999.
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Fig. 1. The 3D model

source of information is thus ignored, whereas it could be used to “stabilize” re-
sults obtained from the noisy data. So far a priori knowledge of the scene to be
reconstructed is used only through CAD models describing it in terms of geomet-
rical primitive blocks such as cubes, pyramids, cones, spheres, . . . Each primitive
block being parameterized, it is then possible to “optimize” the 3D model so as
to obtain the best 3D structure predicting the observed images [9,16]. In many
cases, creating such CAD models is a tedious task and a weaker description of
the geometric structure (in terms of raw geometrical properties) would be more
convenient.

Let us illustrate our claim by a picture (Fig. 2): the scene is a district of a
city. As it can be seen, buildings are never completely visible so that it would
be difficult to model those as polyhedrons. On the contrary, it is fairly easy to
associate to each frontage a polygon and to each edge a segment, as well as
polyhedrons to some details. These primitives can then be constrained using
relations such as orthogonality (e.g. of frontages), parallelism and angle (for
windows). Of course, not all properties need to be introduced one by one and
higher level of abstraction can be used: for example, rectangles can be associated
to each window.

The problem which then arises is organizing these descriptions in such a way
that it can be used by reconstruction algorithms. If we want a fairly generic
system, this definitely requires some form of geometrical reasoning. The poten-
tial importance of using such reasoning methods for computer vision has been
recognized for many years [12], as it is natural to think that geometry plays a
significant role in the analysis and comprehension of at least human made scenes.
Taking account of it would greatly improve the quality and the generality of the
current systems. However, the complexity of the usual scenes makes the use of
current tools difficult. Consequently, those have only been used so far in simple
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Fig. 2. Geometrical features in a picture of buildings

limited situations, e.g. to constrain the position of the camera directly from the
observations of certain known geometric patterns [13,22].

In this paper, we intend to show how some techniques inspired by automated
geometric reasoning can be used as a way to structure the a priori geometrical
knowledge of a given 3D situation in such a way that it can be used to de-
rive better 3D models when using computer vision techniques. The next section
describes the computer vision problem we are interested in and presents the
geometrical tools that are needed in order to solve it. Section 3 then analyzes
the inherent difficulties of using the tools that have been developed within the
framework of automatic theorem proving. Section 4 proposes the two new tools
that have been developed to cope with our problem. Finally, Section 5 shows
results obtained with those tools.

2 Building Geometrically Constrained 3D Models from
Images

3D models such as the one shown in Fig. 1 are built uniquely from a set of images
(Fig. 3). As sketched briefly in the introduction, three main steps are used in
order to achieve this results1:

1 The whole process is depicted with point primitives for the sake of simplicity, it is
however more general and can be used with other kinds of primitives such as lines.
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Fig. 3. Different views of “place des arcades”, Valbonne

– First, characteristic points are extracted from each image.
– Those points are then matched across the images: points corresponding to

different views of a same 3D point are associated.
– Point matches are then used to establish a set of 3 × 3 matrices known as

fundamental matrices that encompass the projective structure of the rigid
scene for each two images. The fundamental matrices are then combined in
order to establish the Euclidian positions and properties of each of the cam-
eras. Note that this whole process is based only on the weak assumption that
the scene is Euclidian and rigid. Once this geometry has been established,
it is easy to obtain a 3D point for each of the point matches by intersecting
the corresponding rays. An initial 3D model has thus been obtained.

However, this scheme still has to face with many problems:
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– Extracted points are always corrupted with noise. This noise has many
sources: electronic or optic effects, sampling, discretization and even biases
when automatic feature extraction is used.

– Incorrect matches can occur: even though a certain number of such matches
can be (and are) detected during the fundamental matrix computation, some
of those may still influence the final result of the algorithm.

– Computing the camera positions and properties from fundamental matrices
is inherently non-linear. In difficult situations, this gives rise to unstabilities
that perturb the final result.

Of course these effects are maximized if using fully automatic methods and
the trend has been to use manual or semi-automatic methods instead. Never-
theless, such inaccuracies always remain. This is all the more annoying that the
process sketched above is not directly optimizing the quality of the 3D model
with respect to the observed data. Consequently, one additional step is usually
performed to complete the above process. This step called bundle adjustment re-
fines the 3D structure and cameras parameters in such a way that the quadratic
errors between observed and predicted points in the images are minimized. To
formalize things better, let us call Mj a given 3D points and mj

i its observed
image obtained with the i-th camera Pi. Denoting by Pi(Mj) the predicted im-
age point corresponding to mj

i , and assuming that there are N cameras and m
3D points, the bundle adjustment process minimizes the following criterion:

N∑

i=1

m∑

j=1

d(mj
i , Pi(Mj))2 ,

where d(m1,m2) represents the distance between m1 and m2. Note that since
the 3D points Mj are computed from the data, the parameters over which the
minimization is carried on are just the Pi, i = 1, . . . , N . In practise, this min-
imization is carried on by doing alternating sequences of 3D reconstructions
(fixing the camera parameters) and of camera calibrations (fixing the 3D point
positions). Figures 1 and 4, show the results obtained using the data of Fig. 3.
The 3D-model is shown from different points of view. With the orthographic
top view, we can see that the roofs are not rectangular and that the frontages
are not planar. These models are not verifying exactly some of the geometrical
properties of the scene that would be expected [2,1].

2.1 Incorporating Constraints in the Reconstruction Process

Of course, one way to improve this is to use the knowledge of geometrical prop-
erties of the scene: this would both stabilize the calibration and give models
which respect the 3D geometry of the scene. To do so, we consider an enriched
input consisting of:

– A set P̃ of 3D primitives which consists of the reconstructed 3D points
that have been used so far are used but also of logical grouping of those
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Fig. 4. A wire frame view of the 3D-model

to introduce higher-level kinds of primitives such as 3D planes or lines. As
before, each 3D point is attached to a set of matched image points.

– A set C̃ of geometric constraints attached to these primitives (incidences,
angles, . . . ).

This input has to be provided by the user. Using the image points associated
with P̃ , we compute a set of camera positions and properties as well as an initial
3D model as above. But we now want to introduce the known constraints C̃ in
the bundle adjustment process. This can be achieved in two different ways:

Using a Parameterization. One technique would be to exhibit somehow a
parameterization p of the scene or more precisely of the set of 3D primitives P̃
obeying to the constraints C̃. Such a parameterization can usually be defined by a
subsetM of the 3D points of P̃ and by a set of expressionsMi(p) derived from C̃
defining all the other 3D points of P̃ in terms of those ofM. By construction, P̃
is then completely defined in such a way that the constraints C̃ are satisfied.
Using such a tool, it is easy to modify the bundle adjustment process to take
account of the constraints. It is sufficient to just modify the 3D reconstruction
part by:

– Reconstruct only the points of M from the image data.
– Deduce the other 3D points using the rules Mi(p).
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The cost function that is minimized then becomes:

N∑

i=1

m∑

j=1

d(mj
i , Pi(Mj(p)))2.

This scheme has been implemented. The result obtained for the above scene is
shown in Fig. 7. As the points ofM play a special role in the method, problems
can be expected if those points are very erroneous due to image measurements as
those errors will be propagated to the complete model. This is one weakness of
the method. Its major advantages are its simplicity (once the parameterization
is computed) and the correctness of its results as it is guaranteed that the 3D
constraints C̃ are satisfied at each time instant.

Using an Optimization Method. An alternative to the previous method is
to rely on optimization techniques to incrementally improve the geometric 3D
structure at each reconstruction step. In its principle, implementing this method
is not very difficult. Each constraint of C̃ can be expressed as an algebraic
expression that must cancel out. Minimizing the residuals of those expression
with respect to the 3D point coordinates is just a matter of gradient descent.

As such, this method suffers from problems similar to those arising in the
method presented in the previous section: although all the 3D primitives seem
to play a similar role, this is still not true as geometrical constraints explicitly
written in C̃ have a particular status with respect to all the various geometric
properties of the figure that are consequences of those. The net effect of this
is that again, some primitives will play a particular role. To understand better
this problem, let us consider a set of lines l1, l2, . . . , lk. We want to state that all
these lines are parallel by writing that lj is parallel to l1 for j = 2, . . . , k. In this
scheme, l1 is clearly granted with a central role that is completely artificial. If it
turns up that l1 is precisely a primitive that has been reconstructed erroneously
whereas l2, . . . lk are recovered correctly, then this error will tend to propagate
to all the other lines. This effect would not have appeared if all the parallelism
constraints had been explicitly stated in C̃.

This suggests that it might be extremely important to be able to generate
all the consequences of the given set of constraints C̃. Using all those in the
minimization process would reduce the risk of propagating errors inconsiderately.

In the following sections, two techniques are presented. The first one attempts
to compute a parameterization p given P̃ and C̃ and has been used with the
program totalcalib to produce the result shown in Fig. 7. A comparison with
the result given in Fig. 4 clearly shows the improvement of the geometric 3D
structure. The second technique shows how consequences of C̃ can be system-
atically computed. The modified bundle adjustment of Section 2.1 has not yet
been implemented, but, as explained above, using this technique should greatly
improve the stability of such a method.
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3 Drawbacks of the Classical Geometric Reasoning Tools
in Computer Vision

In order to do automatic geometrical reasoning, it is necessary to translate the
geometry into an algebraic form. Nowadays, two kinds of techniques are opposed:
one uses a reference frame (a coordinate system), the other, on the contrary, is
free from the choice of a reference frame, using more intrinsic quantities, i.e.
invariants. We briefly summarize these approaches and evaluate them in the
context of computer vision problems.

3.1 Using a Reference Frame

Here, we give short descriptions of some provers which use a coordinate system
to formulate the proofs. We refer to [21] for a more complete treatment of the
algebraic methods that are used. The most well-known techniques for theorem
proving are probably Wu’s method [4,20,19] and Gröbner basis method [6,23].
In these methods, the geometrical objects are defined by several parameters
(for a point, its coordinates; for a line in the planar case, the 3 coefficients
of its equation; . . .). The geometrical properties are represented by polynomial
equations into the parameters of the objects. Roughly speaking, proving a geo-
metric theorem is equivalent to showing that a polynomial vanishes on a certain
manifold, which corresponds to the generic configurations of the theorem. More
precisely [25,26,6], this “reduces” to show that the polynomial representing the
conclusion of a theorem is a member of the radical ideal generated by the poly-
nomials representing its hypotheses divided (or saturated) by the ideal generated
by its degeneracy conditions.

Characteristic set methods transform the initial system of equations into
one (or several) triangular set(s), by which any valid geometric property of the
configuration can be reduced to zero. These triangular sets are obtained as fixed
points of an autoreduction process of the initial equations.

Gröbner basis methods compute a basis of the initial ideal saturated by the
degenerate conditions. This also allows the reduction to zero of any polynomial
which corresponds to a geometric property of the configuration.

3.2 Using Geometric Invariants

Another class of methods uses invariant calculus and are of particular interest
in computer vision (for these invariants quantities may be computed directly in
the images). The theorem provers of this family use intrinsic computations, that
are usually more compact and easier to interpret in natural language. We briefly
review some of these provers (see also [21]).

In the prover Cinderella [7,17], the geometrical properties are represented
by polynomials in brackets (more precisely by binomials of determinants), many
geometric properties can be written in this way. In this case, the reduction of the
conclusion is performed by simple linear algebra on integer matrices representing
the exponents of the variables involved in these binomials.
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In the works of [5,14], hypotheses are also translated into polynomials of
the bracket algebra (extended in GEX [5] by other primitives like the area of
quadrilateral, inner products of vectors, angles). The methods are essentially
based on rewriting rules on points. In the system GEO [14], only collinearity
relations are considered. Rewriting rules on points are constructed formally in
the exterior algebra, taking into account the generic degree of freedom of each
point.

Clifford algebras which are exterior algebras extended with a quadratic form
and a related product (see [8]) have also been used [18,22]. Theorems are proved
by reduction modulo algebraic expression associated with the hypotheses.

Other primitives like distance between points have also been considered.
In [11] for instance, the geometrical properties are translated into polynomi-
als in the distances between points, and straightening laws are applied to get a
normal form and test the validity of some theorems.

3.3 A Comparison of These Methods in Our Context

We come back now to our problem of 3D modelisation and compare first the
existing provers in this context.

Wu’s and Wang’s methods are ordering the points and using a system of co-
ordinates, according the theorem to be proved. The method has the advantage
to deal uniformly with different kinds of geometric constraints (collinearity, or-
thogonality, angles, . . . ). The interpretation of the polynomial calculus in terms
of geometric relations is not obvious. Moreover, as experimented on the scene
“place des arcades” (Fig. 1), the computation is very expensive on problems
involving many points or objects. In this scene, 102 parameters and 101 equa-
tions are necessary to describe the geometry of the scene. With such a number
of parameters, it is not possible to use characteristic set or Gröbner basis tech-
niques, for we have an explosion of the computation time and memory resource
during the computation of these polynomial sets. Notice that this explosion is
essentially due to the inter-reduction of the polynomials.

The Richter-Gebert Crapo method has the advantage to reduce the proof
to simple linear algebra on integer matrices. Usually the proofs are very short.
However, there is no way to assert that a property is generically false (we have
only sufficient conditions). Combining both points, lines, planes in a same com-
putation seems to be difficult. The extension to the 3D case is possible but
expensive.

The method of Chou-Gao-Zhang has the advantage to produce fast and sim-
ple proofs. It requires also a constructive order on the points and it has some
difficulties with circles (quadratic rewriting rules instead of linear ones for lines
and points). Its generalization to the 3D case has not yet been really investigated.

In the context of 3D modelisation, none of these approaches yield a satisfac-
tory answer. The main difficulties that we encounter are:
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– The definition of a natural constructive order on the objects,
– The construction of reductor sets that can handle many geometric objects
– The automatic generation of theorems.

We describe our treatment of these points in the next sections.

4 Application of Theorem Proving to Computer Vision

4.1 Building a Constructive Order

Our configurations are defined by features (points, lines, planes, . . . ) and the
constraints between them without any information on their construction or their
degree of freedom. We describe here an automatic tool, which finds the degree
of freedom for all the features and which sorts the features so that we can build
the configuration. Such an order will be called constructive order. We start with
some definitions:

– The degree of freedom of an object is the dimension of the manifold to which
this object belongs. In other words, it is the number of parameters of the
object which can be instantiated randomly.

– A generic component of a configuration is a component where all the objects
are distinct and the dimension of the intersection of two objects is the largest
possible, taking into account all the constraints on the two objects.

– An object will be called constructible iff its degree of freedom is equal to
zero.

– A constraint will be called active iff only one of the two objects which are
involved in it, is built.

The Algorithm. It is an iterative algorithm which starts with an empty list
of built objects and an empty list of active constraints. The initial degree of
freedom of each object is computed (3 for points and planes, 4 for lines). The
algorithm stops when all the objects are built. Here are its main steps:

1. Search one unbuilt object with minimal degree of freedom.
2. Compute the rewriting rules for it, using its constraints with the previous

objects.
3. Build it, that is add it to the list of constructed objects.
4. Compute the new set of active constraints.
5. Compute the new degrees of freedom of all the unbuilt objects.

We discuss now the problems to be solved during these steps.

How to Choose the Object to Be Built. In step (1), we have to choose
one object of minimal degree of freedom. In many cases, we will have many
choices and we choose the object among the objects of smallest dimension. If this
refinement is not sufficient, we choose the object, which induces the maximum
number of active constraints. If there still remains several candidates, we choose
any of them.
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Constructing Sparse Reductor Sets. A main obstacle of the provers de-
scribed in Section 3 is their inherent complexity, due to the quick growth of
the size of the polynomials, with the number of geometric objects. In the appli-
cations that we consider, the number of objects (e.g. about 50 points, lines or
planes in the scene “place des arcades”) is much larger than in classical theorems
(see [3,5]), although the geometric constraints may be simpler. It implies that in
characteristic set methods, we deal with many variables and since the polynomi-
als are interreduced, the output polynomials of the triangular sets will involve
all these variables and will thus be huge. The modification that we propose to
such methods consists in replacing dense characteristic sets by sparse triangular
sets of polynomials, which also allow to reduce every valid geometric property
to zero. These sets will be called hereafter sparse reductor sets.

Our modification is specific to geometrical problems, where object configu-
rations are described by a few kind of geometric constraints (collinearity, copla-
narity, orthogonality, cocyclicity . . . ). If a point X is described by such a set of
hypotheses, the possible configurations for X belong to a finite number of classes,
going from the generic intersection case to a finite number of degenerate cases.
For instance, if X is on two projective lines, either these lines are intersecting
properly and X is their intersection or they are identical and X is any point
on the line. Once this so called geometric type is known, we can easily derive a
reductor set describing the position of X . As the position of X depends explicitly
on few previous points (those which actually appear in the hypotheses on X),
this yields a reductor set which is sparse. Let us illustrate now this approach,
which has already been used in [15] for computations in the exterior algebra.

We consider here an approach using a reference frame, in which we express
the hypotheses by polynomials






H1(X,A1, . . . , Ak1) = 0
...
Hl(X,U1, . . . , Ukl

) = 0

(1)

where Hi are polynomials in the coordinates of the objects, X is the point to
be built and A1, . . . , Uk are the built points. As the geometric constraints on X
involve specific and simple polynomials in the coordinates of X (usually linear or
quadratic), the possible geometric type of intersection can effectively be analyzed
by checking the vanishing (or non-vanishing) of certain resultant polynomials
in the coordinates of the previous points. For instance, if a point X is in the
intersection of the linear spaces A = 〈A1, . . . , Ak1〉 and B = 〈B1, . . . , Bk2〉 The
intersection of the linear spaces can be defined formally as the last non-zero term
of the expansion:

D(A,B) = Dk1(A,B) ⊕ · · · ⊕Dk1+k2−n(A,B).

(see [15] for more details).
Checking the vanishing (or non-vanishing) of these resultant polynomials can

be performed by using the reductor set associated with these previous points.
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It is also possible to do it by sampling techniques (choosing random values for
the free parameters and computing the other). This is the method that we have
used to construct a sparse reductor set for the scene “place des arcades”, because
using directly characteristic sets was intractable in this case. In our application,
we may even skip this checking step, and use external informations, that we
known from the initial model.

How to Avoid to the Redundant Constraints. During the update of the
degrees of freedom in step (5), we have to look to all the active constraints on
each unbuilt object and to compute the degree of freedom induced by these con-
straints. This degree of freedom can be computed by reduction of the constraints
on the new point by a triangular set (in order to remove redundant hypotheses).
In practise, we do not use this technique because it requires too much memory
and time resources. We prefer to use a random instantiation of the degrees of the
parameters defining each built object (its degree of freedom). Once the previous
points are instantiated, the constraints defining the object to be built defines a
polynomial system in 3 or 4 variables (3 for points and planes, 4 for lines). The
computation of a triangular set for such a system is easy and fast. This yields
the degree of freedom of (or the dimension of the variety described by) the new
point. If this leads to an impossible construction (an empty variety), we stop the
computation, backtrack to the last choice step (1) and we choose another point.

Backtracking. The refinements of the choice described in step (1) are based
on heuristics and but may lead to a degenerated component. Thus during the
algorithm, if we detect that one constraint is not satisfied or that we are not in
a generic component (e.g. two objects are the same), we backtrack to step (1).
For that, we maintain a list of possible choices at each step of the algorithm and
process this list until a non-degenerate component is built. If this is not possible,
we stop and output “failure”.

Example 1 We consider the following hypotheses, defining a subconfiguration
of “place des arcades” (Fig. 5):

seq(point(p.i),i=1..4):
seq(line(l.i),i=1..2):
map(x->plane(x),[H1,H2,H3,H11]):

map(OnObject,[p2,p3],H1):
map(OnObject,[p1,p2,p3],H2):
map(OnObject,[p1,p2],H11):
OnObject(p4,H3):
map(OnObject,[p1,p2],l1):
map(OnObject,[p2,p3],l2):
PerpendicularConstraint(l1,l2):
PerpendicularConstraint(H1,H2):
PerpendicularConstraint(H2,H3):
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PerpendicularConstraint(H11,H3):
If we execute the algorithm on this scene, the following order is obtained:

[P2, l1, P1, l2, P3, H2, H1].
At this stage, it remains to be built p4, H3 et H11. The degrees of freedom
and the dimensions are the same for H11 and H3; H3 activates two constraints
whereas H11 activates that only one constraint. Thus the algorithm chooses the
planeH3, adds [H3, H11] to the list “component”. This choice leads us to a degen-
erated component of the configuration (in this case H11 is equal with H2). Thus,
the algorithm backtracks, deletes H3 of the list [H3, H11], and constructs H11,
and so on. The constructive order found in this example is

[P2, l1, P1, l2, P3, H2, H1, H11, H3, p4].

4.2 Theorem Discovering

Up to recently, theorem provers were used only to check the conclusion of a
theorem. However, in our context as explained in Section 2.1, the theorems are
not inputs of the problem and have to searched in the geometric configurations,
in order to improve the modelisation process. This task can be performed by
trial and error, using a geometric prover but it is tedious and requires geometric
intuition. We are interested in a more systematic approach.

From an algebraic point of view, any polynomial of the ideal associated with
the generic configurations is a theorem. If we are looking for relations between
specific points, we intersect this ideal with the subring of coordinates of these
points. This is the approach used in [23], the elimination process being carried
on by Gröbner basis computations.

Our approach proceeds differently: a (sparse) reductor set of the scene is
computed and used to recover the theorems. It is based on the following simple
remark:

Remark 2 The theorems of a configuration correspond to homogeneous invari-
ant relations of small degree in the bracket algebra.

The Principle. We begin by introducing some notations in the bracket algebra:
Let Ξ be a subset of E, a letter of the bracket algebra on Ξ is either an element
of Ξ or the linear form H defining the hyperplane at infinity, or the bilinear
form Q defining the metric of the Euclidean space.

Definition 3. We denote by support of a monomial of the bracket algebra
on Ξ, the set of letters (counted with their multiplicity) appearing in the mono-
mial.

The support of H(A)H(C)Q(A,B) |A,B,C||A,D,E| is
Supp(H(A)H(C)Q(A,B) |A,B,C||A,D,E|) = H2,Q, A3, B, C2, D,E.

We denote by homogeneous component the set of all the monomials with
the same support.
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According to Remark 2, the theorems correspond to relations between mono-
mials of a same homogeneous component. We thus construct all the monomials
of a same homogeneous component up to a given degree and consider a linear
combination of these monomials with indeterminate coefficients. This generic
polynomial is then reduced by the reductor set either using a reference frame or
invariants and the remaining system is solved in order to determine the coeffi-
cients which yield the properties of the configuration.

Algorithm 4 For a geometrical configuration C:
1. Choose a reference frame and compute a reductor set RS for the hy-

potheses of C.
2. For each homogeneous component in the bracket algebra, of C:

– compute a generic polynomial P in the formal vector parameter u =
[u1, · · · , uk] (where k is the number of monomials in the homogeneous
component).

– compute the remainder R of the reduction of P by RS.
– compute the vectors u such that R = 0 and find their geometric inter-

pretation.

Notice that the last step reduces to solving a linear system in u, for the polyno-
mial P is linear in u and the reduction does not change this property. Moreover,
theorems correspond to integer solutions of this system. The task of interpre-
tation of the geometric relations is based on a list of binomial relations corre-
sponding to basic geometrical properties. We do not have yet a systematic way
to do it. This will be discussed further in the conclusion. Note however that
having such an interpretation is not necessary for the application described in
Section 2.1.

5 Examples

This section details two complete examples of the techniques just described.
These experimentations were performed mostly in maple. The graphs were ob-
tained with the tool dot. The wire-frame models of Fig. 7 were obtained with
the tool totalcalib of the Robotvis project.

5.1 A Complete Example: “La place des arcades” Valbonne France

In this section, we detail the case of the parameterization of the 3D scene depicted
in figure (Fig. 3).

Geometrical Constraints and Results after Processing. From the image
sequence of Fig. 3, we can infer basic relations between the geometric objects:
some frontages are parallel or perpendicular, the roofs of the building are rect-
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angular . . . Below are written the constraints that have been used (maple file).
See Fig. 5 for the notations.
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Fig. 5. A model built by hand

## Definition of the objects in the model
seq(point(p.i),i=1..23),
map(x->plane(x),[H1,H2,H3,H4,H5,H6,H10,H11]),
seq(line(l.i),i=1..17):

## Incidence constraints: line, plane
OnObject(l1,H2),
OnObject(l1,H11),
OnObject(l2,H1),
OnObject(l7,H5),
OnObject(l8,H3),
OnObject(l8,H6),
OnObject(l12,H3),
OnObject(l12,H10),
OnObject(l11,H10),
OnObject(l15,H3),
OnObject(l15,H5):

## Incidence constraints: point, plane
op(map(OnObject,[p1,p2,p3,p4],H1)),
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op(map(OnObject,[p3,p4,p5,p6,p7],H2)),
op(map(OnObject,[p6,p7,p10,p11,p12],H3)),
op(map(OnObject,[p6,p8,p9,p10],H4)),
op(map(OnObject,[p9,p10,p11,p12,p13,p14],H5)),
op(map(OnObject,[p11,p13,p15,p16],H6)),
op(map(OnObject,[p11,p12,p16,p17],H3)),
op(map(OnObject,[p16,p17,p18,p19],H3)),
op(map(OnObject,[p16,p19,p20,p23],H3)),
op(map(OnObject,[p20,p21,p22,p23],H10)),
op(map(OnObject,[p2,p4,p6,p10,p14],H11)):

## Incidence constraints: point, line
op(map(OnObject,[p4,p6],l1)),
op(map(OnObject,[p4,p3],l2)),
op(map(OnObject,[p6,p8],l3)),
op(map(OnObject,[p6,p10],l4)),
op(map(OnObject,[p8,p9],l5)),
op(map(OnObject,[p9,p10],l6)),
op(map(OnObject,[p11,p13],l7)),
op(map(OnObject,[p11,p16],l8)),
op(map(OnObject,[p13,p15],l9)),
op(map(OnObject,[p15,p16],l10)),
op(map(OnObject,[p20,p21],l11)),
op(map(OnObject,[p20,p23],l12)),
op(map(OnObject,[p21,p22],l13)),
op(map(OnObject,[p22,p23],l14)),
op(map(OnObject,[p10,p11,p12],l15)),
op(map(OnObject,[p16,p17,p23],l16)),
op(map(OnObject,[p18,p19,p20],l17)):

## Constraints of parallelism: plane, plane
ParallelConstraint(H5,H2),
ParallelConstraint(H4,H6),
ParallelConstraint(H6,H10):

## Constraints of parallelism: line, line
ParallelConstraint(l3,l6),
ParallelConstraint(l4,l5),
ParallelConstraint(l7,l10),
ParallelConstraint(l8,l9),
ParallelConstraint(l11,l14),
ParallelConstraint(l12,l13):

## Constraints of orthogonality: plane, plane
PerpendicularConstraint(H11,H3),
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PerpendicularConstraint(H11,H2),
PerpendicularConstraint(H1,H2),
PerpendicularConstraint(H3,H2):

## Constraints of orthogonality: line, line
PerpendicularConstraint(l1,l2),
PerpendicularConstraint(l4,l6),
PerpendicularConstraint(l7,l9),
PerpendicularConstraint(l11,l12):

Algorithm 1 is used to obtain a constructive order (using the function Ordre)
which gives the following list of objects sorted in the increase order of construc-
tion:

[p6, l1, p4, l2, p3, H2, H1, H11, H3, p10, H5, l4, l15, p11, p2,
p7, p12, p14, l6, l3, p8, H4, l5, p9, H6, l8, p13, l7, l9, p16,
l10, p15, H10, l12, p20, l11, p23, l14, l16, p21, l13, p22, p17,
p18, l17, p19, p1, p5].

This constructive order can be represented by the dependence graph (Fig. 6)
where each node is associated to one object (ellipse nodes represent points,
rectangular nodes, planes and diamond nodes, lines). The color of node encode
the degree of freedom of the object represented by the node (darkgrey for three,
grey for two, lightgrey for one and white for zero). Each edge is associated to
one geometrical constraint. The orientation of the edge shows the dependence
between the nodes.

Now, we can compute a triangular set of the polynomial equations of the
geometrical constraints. The variable order is described below. The independent
variables appear in the first list, and in the second, are the variables which are
not free.

[p6[1],p6[2],p6[3],l1[1],l1[2],p4[1],l2[1],p3[1],p10[1],p11[2],
p2[1], p7[1],p12[1],p14[1],l6[1],p8[1],p13[1],p16[1],H10[1],
p20[1],p23[1], p21[1],p17[1],p18[1],p18[2],p19[1],p1[1],
p1[2],p5[1],p5[2]]

[l1[3], l1[4], p4[2], p4[3], l2[2], l2[3], l2[4], p3[2], p3[3],
H2[1], H2[2], H2[3], H1[1], H1[2], H1[3], H11[1], H11[2], H11[3],
H3[1], H3[2], H3[3], p10[2], p10[3], H5[1], H5[2], H5[3], l4[1],
l4[2], l4[3], l4[4], l15[1], l15[2], l15[3], l15[4], p11[2],
p11[3], p2[2], p2[3], p7[2], p7[3], p12[2], p12[3], p14[2],
p14[3], l6[2], l6[3], l6[4], l3[1], l3[2], l3[3], l3[4], p8[2],
p8[3], H4[1], H4[2], H4[3], l5[1], l5[2], l5[3], l5[4], p9[1],
p9[2], p9[3], H6[1], H6[2], H6[3], l8[1], l8[2], l8[3], l8[4],
p13[2], p13[3], l7[1], l7[2], l7[3], l7[4], l9[1], l9[2],
l9[3], l9[4], p16[2], p16[3], l10[1], l10[2], l10[3], l10[4],
p15[1], p15[2], p15[3], H10[2], H10[3], l12[1], l12[2], l12[3],
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Fig. 6. Dependence graph of “place des arcades”
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l12[4], p20[2], p20[3], l11[1], l11[2], l11[3], l11[4], p23[2],
p23[3], l14[1], l14[2], l14[3], l14[4], l16[1], l16[2], l16[3],
l16[4], p21[2], p21[3], l13[1], l13[2], l13[3], l13[4], p22[1],
p22[2], p22[3], p17[2], p17[3], p18[3], l17[1], l17[2], l17[3],
l17[4], p19[2], p19[3], p1[3], p5[3]]

Below, is the triangular set computed with respect the variable order described
above. This triangular set has 131 polynomials. Here are the first and last poly-
nomials of this set:

[p6[3] l1[3] - p6[1] + l1[1],
p6[2] - l1[2] - p6[3] l1[4],
l1[4] p4[1] - l1[4] l1[1] - l1[3] p4[2] + l1[3] l1[2],
p4[2] - l1[2] - p4[3] l1[4],

. .

. .

. .

H3[3] p19[2] - H3[3] l17[2] + l17[4] p19[1] H3[1]
+ l17[4] p19[2] H3[2] + l17[4],

p19[1] H3[1] + p19[2] H3[2] + p19[3] H3[3] + 1,
p1[1] H1[1] + p1[2] H1[2] + p1[3] H1[3] + 1,
p5[1] H2[1] + p5[2] H2[2] + p5[3] H2[3] + 1].

The corrected model after adjustment is shown in Fig. 7.

5.2 Examples of Theorem Discovering

We illustrate now the method proposed for discovering theorems in three dif-
ferent contexts. The first context is related to characteristic sets, the second to
direct rewriting rules on points and the last one to computations in the exterior
algebra.

Example 5 (The median configuration) Let ABC be a triangle
and A′, B′, C′ be the middle points of [BC], [AC], [AB], respectively.

For this configuration of n = 6 points, we have
(
n
3

)
= 20 brackets and 5

(
n
5

)
+(

n
6

)
= 31 homogeneous components of degree 2. For instance choose one of these

31 components:

|A,B,C||A′, B′, C′|, |A,B,A′||C,B′, C′|, |A,B,B′||C,A′, C′|,

|A,B,C′||C,A′, B′|, |A,C,A′||B,B′, C′|, |A,C,B′||B,A′, C′|, |A,C,C′||B,A′, B′|,
|A,A′, B′||B,C,C′|, |A,A′, C′||B,C,B′|, |A,B′, C′||B,C,A′| .

We form the generic polynomial

P = u1|A,B,C||A′, B′, C′|+ · · ·+ u10|A,B′, C′||B,C,A′| ,
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Fig. 8. The median configuration

and compute a reductor set RS using geometric rewriting rules:

A′ −→ 1
2 (B + C) ,

B′ −→ 1
2 (A+ C) ,

C′ −→ 1
2 (A+B) .
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Then, we compute the reduction of P by RS:

R = |A,B,C|2 (−u3 + u2 − u9 + 2u1 − u5 + u8 − u7) .

We solve the diophantine equation (linear system over Z):

– For the solution u5 = 1, u9 = −1, u1 = u2 = u3 = u4 = u6 = u7 = u8 =
u10 = 0, we obtain this bracket equation:

|A,C,A′||B,B′, C′| − |A,A′, C′||B,C,B′| = 0 .

We can recognize the property the lines (AA′), (BB′), (CC′) are concurrent.

– Another solution is u2 = u5 = 1, u1 = u3 = u4 = u6 = u7 = u8 = u9 =
u10 = 0 . Thus, we obtain this bracket equation:

|A,A′, B||B′, C′, C|+ |A,A′, C||B′, C′, B| = 0 ,

which means that the lines (B′C′) and (BC) are parallel.
The proof: A′ is the meet point of (AA′) and (BC). I is the meet point of
(B′C′) and (BC), thus we have:

(A′, I;B,C) =
|A,A′, B||B′, C′, C|
|A,A′, C||B′, C′, B| ,

which by hypothesis is equal to −1. So the points B, C, A′, I are in harmonic
division. But, the fact that A′ is the middle point of [BC] implies that I is
at infinity. Consequently, (BC) and (B′C′) are parallel.

Example 6 (Configuration of a rectangle) Let ABCD a parallelogram
such as AC ≡ BD. Choosing a reference frame, A(0, 0), B(x1, 0), C(x2, x3),
D(x4, x5), the hypotheses are:

(AB) ‖ (CD) −x1(x2 − x4) = 0 ,
(AD) ‖ (BC) x4x3 − x4x1 − x5x2 = 0 ,
AC ≡ BD x2

2 + x2
3 − x2

4 − (−x5 + x1)2 = 0 .

We compute a characteristic set CS:

x2
1x2(x1 − x3) ,
x1(x2 − x4) ,
x5x

2
1x2 .
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We add the points of the absolute conics I and J , so we have 6 points and 20
brackets and 31 homogeneous components. We choose the homogeneous compo-
nent of support: A2, B,D, I, J .

P = u1|A,B,D||A, I, J |+ u2|A,B, I||A,D, J |+ u3|A,B, J ||A,D, I| .
Then, we compute the pseudo-remainder R of P by CS:

R = x2
1x

2
2 (2u1 + u2 − u3),

and solve the diophantine equation:

2u1 + u2 − u3 = 0 .

One solution is u1 = 0 and u2 = u3 = 1,

|A,B, I||A,D, J | + |A,B, J ||A,D, I| = 0 .

This equation says that the lines (AB) and (AD) are perpendicular.

Example 7 (Configuration of “place des arcades”) We want to find the
properties involving orthogonality relations in the sub-configuration of Fig. 9.

��

��
��
��
��

�
�
�
�

����

�
�
�
�

��
��
��
��

��
��
��
��

����

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��

p2

p1

p3

p4

p5
p6

p8

p9

p13

p10

p11

p12

p7

Fig. 9. A sub-configuration of ”place des arcades”

First, we defined a constructive order using the method described in Sec-
tion 4.1. Secondly, we construct a reductor set of the configuration, based on
rewriting rule in the exterior algebra. We have used here the dual operator ∗,
which computes the normal to a plane. We assume here that the orthogonality
defined by duality is a same that the orthogonality defined by the quadric Q.
We obtain the following rewriting rules:
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l3 → p8 ∧ p6

p8 → H2 ∨ l5
l5 → (l4 ∨H) ∧ p9

H4 → p6 ∧ p9 ∧ p10

l6 → p9 ∧ p10

p9 → x5 p10 + x6 p12 + (1− x5 − x6)((U1 ∧ U2) ∨H5)
p11 → x3 p10 + (1− x3)(l7 ∨H)
l7→ H5 ∨H6

H1 → p3 ∧ p4 ∧ (H2)∗

p3 → x2 p4 + (1x2)(l2 ∨H)
l2 → ((l1 ∨H)∗ ∨H) ∧ p4

p4 → x1 p6 + (1− x1)(l1 ∨H)
l1 → H2 ∨H3

l4 → H6 ∨H3

p10 → H3 ∨H5 ∨H6

H5 → (H2 ∨H) ∧ p12

H2 → p6 ∧ p7 ∧ (H6)∗

H6 → p6 ∧ p7 ∧ p12 .

In this case, the classical techniques using coordinates failed due to the compu-
tational memory resource.

Then, we compute the different homogeneous components involving Q2,H
and concentrate on the homogeneous component in the points p4, p6, p8, p9. In
this case, we have only one generic component

u1((p4 ∧ p6) ∨H)∗ ∧ ((p8 ∧ p9) ∨H) + u2((p4 ∧ p8) ∨H)∗ ∧ ((p6 ∧ p9) ∨H)
+u3((p4 ∧ p9) ∨H)∗ ∧ ((p6 ∧ p8) ∨H) + u4((p6 ∧ p8) ∨H)∗ ∧ ((p4 ∧ p9) ∨H)
+u5((p6 ∧ p9) ∨H)∗ ∧ ((p4 ∧ p8) ∨H) + u6((p8 ∧ p9) ∨H)∗ ∧ ((p4 ∧ p6) ∨H) .

and check that the only valid relation is for u2 = · · · = u6 = 0, that is (p4, p6)
orthogonal to (p8, p9).

6 Conclusion

This paper describes an application of theorem proving to 3D modelisation prob-
lems in computer vision. We combine the construction of a reductor set with the
analysis of the graph of constraints, in order to compute a correct parameteri-
zation of our 3D model. This parameterization is then used in a minimization
process to fit the parameters defining the model with its images in the cam-
era(s). We propose a new technique for sorting points and constructing sparse
reductor sets. This method uses a coordinate system and mixes symbolic and
numeric computations. This enables us to treat systems that were intractable by
Gröbner basis or characteristic set methods, but many improvements may still
be considered.
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We also focus on discovering theorems, which can be used in the numeri-
cal steps in the 3D reconstruction, described in Section 2.1. Our approach uses
the bracket algebra formalism, which has the advantage to deal with invariant
quantities (like determinants of planar points) which can be useful for direct
computations from the images. This formalism also allows the decomposition of
algebraic expressions into homogeneous components that are used to find the
geometric properties of the configuration. This task can be easily parallelized,
for the computation in each component is independent of the others once the
reductor set is available. Indeed, in practice, we are running several reduction
processes (one for each homogeneous component) in parallel on different work-
stations. This homogeneity also permits to restrict our search to a subset of
points of the configuration or to special classes of relations (projective, affine,
Euclidean). A drawback of the approach is the fast growth of the number of
components with the number of geometric features and the degree of the mono-
mials. Fortunately, interesting properties in a figure correspond to relations of
small degree. An interesting feature of our approach is that reductor sets are
computed only once.

Among the points that need improvements, we would like to avoid as much
as possible the backtracking in the construction of the order on the points. One
solution would be e.g. to add new and trival connections in the graph that can
be inferred directly from the geometric hypotheses. Interpretation of relations
obtained with Algorithm 4 in terms of geometric properties may be automatised
using Cayley factorization techniques [24]. As a final remark, the numerical qual-
ity of the parameterization of the model also needs a better understanding and
deeper analysis, as it is used in a numerical optimization process.
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281–301. Cambridge Univ. Press, 1998. 214, 219

24. N. White. Multilinear Cayley Factorization. Journal of Symbolic Computation,
11(5 & 6): 421–438, May/June 1991. 230



232 Didier Bondyfalat et al.

25. W.-t Wu. Basic Principles of Mechanical Theorem Proving in Elementary Geome-
tries. J. Automated Reasoning, 2: 221–252, 1986. 214

26. W.-t Wu. Mechanical Theorem Proving in Geometries: Basic Principles (trans-
lated from Chinese by X. Jin and D. Wang). Texts and Monographie in Symbolic
Computation. Springer, 1994. 214



Automated Geometry Diagram Construction

and Engineering Geometry�

Xiao-Shan Gao

Institute of Systems Science, Academia Sinica
Beijing 100080, P.R. China

xgao@mmrc.iss.ac.cn

Abstract. This paper reviews three main techniques for automated ge-
ometry diagram construction: synthetic methods, numerical computation
methods, and symbolic computation methods. We also show how to use
these techniques in parametric mechanical CAD, linkage design, com-
puter vision, dynamic geometry, and CAI (computer aided instruction).
The methods and the applications reviewed in this paper are closely
connected and could be appropriately named as engineering geometry.

1 Introduction

In the area of automated geometry reasoning, most of the efforts have been con-
centrated on automated geometry theorem proving and discovering. These efforts
lead to the classic work of Tarski [61], Gelernter [29], and Wu [68]. On the other
hand, automated geometry diagram construction (AGDC) is more or less over-
looked. Actually, AGDC has been studied in the CAD community under a differ-
ent name: geometric constraint solving (GCS) and with a different perspective:
engineering diagram drawing. GCS is the central topic in much of the current
work of developing intelligent or parametric CAD systems [2,5,21,33,43,53,59,63]
and interactive constraint-based graphic systems [3,32,60]. The main advantage
of using the constraint approach is that the resulting systems accept declar-
ative descriptions of diagrams or engineering drawings, while for conventional
CAD systems the users need to specify how to draw the diagrams. As a result,
parametric systems are more powerful and user friendly.

Three main approaches have been developed for automated diagram con-
struction: the synthetic approach, the numerical approach, and the symbolic
approach.

In the synthetic approach, a pre-treatment is carried out to transform the
constraint problem into a step-by-step constructive form which is easy to draw.
A majority of the work is to transform the problem to a constructive form that
can be drawn with ruler and compass. Once a constraint diagram is transformed
into constructive form, all its solutions can be computed efficiently. Two main
techniques used in the synthetic approach are the rule-based search and the graph
� This work was supported in part by an Outstanding Youth Grant from the Chinese
NSF and the National “973” Project.

X.-S. Gao, D. Wang, and L. Yang (Eds.): ADG’98, LNAI 1669, pp. 232–258, 1999.
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analysis. The basic idea of the rule-based search [2,5,21,59,63] is to represent the
knowledge of geometric construction as deductive rules and use various search
techniques from AI to find a step-by-step construction procedure for a con-
strained diagram. The basic idea of the graph analysis method [33,46,43,53,62]
is to represent the geometric conditions as a graph and use various techniques
from graph theory to attack the problem.

In the numerical approach, geometric constraints are translated into alge-
braic equations and various numerical techniques are used to solve these equa-
tions. The first generation constraint-based systems, such as Sketchpad [60] and
ThingLab [3], used numerical relaxation as the last resort of solving constraint
problems. Newton iteration method was used in Juno-2 [32] and in the Varia-
tional Geometry [51]. The main advantage of numerical methods is their fast
speed and generality. On the other hand, it also needs further improvements
in several aspects: like finding stable solutions during animation and finding all
solutions of equation systems.

In the symbolic approach [42,22], we also transform the geometric constraints
into algebraic equations. Instead of using numerical methods to solve the alge-
braic equations directly, we first use general symbolic methods such as Wu-Ritt’s
characteristic set method [68], the Gröbner basis method [7], the Dixon resul-
tant method [39], and Collins’ cylindrical algebraic decomposition method [15]
to change the equation set to new forms which are easy to solve, and then solve
the new equations numerically. The advantage of the symbolic computational ap-
proach is that it may provide complete methods for many problems in AGDC.
On the other hand, current symbolic methods are still too slow for real time
computation.

The above AGDC techniques can be applied to a variety of engineering prob-
lems: parametric mechanical design, linkage design, robotics, computer vision,
and geometric modeling. They can also be used in dynamic geometry, physics,
and CAI (computer aided instruction). We call the methods and the applications
reviewed in this paper engineering geometry.

This paper is an attempt to give an overview of the research on engineering
geometry with emphasis on the work done by the extended Wu group. The reader
may find details for other related work based on the given references. In the next
section, we introduce two synthetic approaches: the global propagation and the
graph decomposition approach. In Section 3, we introduce the application of
the numerical optimization methods to AGDC. In Section 4, we introduce the
symbolic approach based on Wu-Ritt’s characteristic set method. In Section 5,
we introduce dynamic geometry as a tool of generating diagrams. In Section 6,
we discuss applications of these techniques.

2 Synthetic Approaches to AGDC

Synthetic approaches provide a geometric way of solving algebraic equations.
They can generate all solutions of a diagram efficiently and with high precision.
The solutions provided by this kind of approaches are stable and have geomet-
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ric meanings. So in most drawing systems, synthetic approaches are first used
to solve the diagram construction problem. If synthetic approaches fail, other
approaches will be used.

In this section, we will give a brief introduction to two synthetic approaches:
the global propagation approach [21] and Owen’s graph decomposition
approach [53]. Other important synthetic approaches include Hoffmann’s graph
analysis approach [33], Kramer’s freedom of degree analysis approach [43], Lath-
eam and Middleditch’s approach based on weighted graphs [46], Lee’s optimized
rule-based method [47], and rule-based methods proposed in [1,64].

2.1 The Global Propagation Method

Local Propagation is a basic AI technique to solve constraint problems [57,49].
It is to find unknown quantities one by one from the set of known quantities.
For instance, from the relation 5F − 9c = 160 about two kinds of measurement
of temperature c and F , we may find the following propagational rules:

1. If c is known, we may compute F with the formula: F = 9
5c+ 32.

2. If F is known, we may compute c with the formula: c = 5(F−32)
9 .

For AGDC, local propagation is closely related to the method of locus intersec-
tion. For instance, to draw a triangle ABC with sides AB = 4, BC = 5, and
CA = 6, we first draw an arbitrary point as point A. To draw point B, we first
draw a circle (locus) with center A and radius 4, and point B is an arbitrary
point on this circle. To draw point C, we first draw two circles (loci) with cen-
ters A and B and radii 6 and 5 respectively, and C is the intersection of these
two circles.

It is clear that the power of local propagation is limited. It can not solve con-
straint problems with loops, i.e., more than one geometric objects are constrained
or referred to simultaneously in the problem. Global propagation is proposed to
solve constraint problems with loops [21]. Like the local propagation method, it
tries to determine a geometric object with the locus intersection method. But
the global propagation uses not only the constraints involving this object but
also implicit information derived from other constraints. The global informa-
tion needed in the propagation comes from a geometry information base (GIB)
built before the construction begins. The GIB for a configuration is actually a
database containing all the properties of the configuration that can be deduced
by using a fixed set of geometric axioms [14].

Figure 1 is an example from [33]. Starting from point B, it is easy to construct
B,C,X . Next, we want to construct D. Since |XD| is known, we need only to
know the direction of XD which can be determined by the following global
propagation of line directions: XD ⊥ DE, � (DEA) = a2, AE ⊥ AB, and
� (ABC) = a1.

Generally speaking, to determine the direction of a line L, we first consider
some basic situations:

1. L passes through two known points.
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C

D

A

X

B

E

The constraints:
|BC| = d1, |ED| = d2,
|XC| = d3, |XD| = d3
ANGLE(ABC) = a1, ANGLE(DEA) = a2
PERP(X,C,C,B), PERP(X,D,D,E), PERP(B,A,A,E)

Fig. 1. An example to show the propagation of line direction

2. L cuts a fixed length between a pair of parallel lines.
3. L cuts a pair of segments on the sides of a known angle such that the ratio

of the segments is known.
4. L cuts a pair of segments between three known lines passing through a point

such that the ratio of the segments is known.

Secondly, line directions can be propagated as follows:

l1 τ1 l2 τ2 . . . τs−1 ls,

where li are lines and τi represent the fact that li and li+1 form a known angle.
If the direction of ls is determined by one of the basic situations, the direction
of line l1 is known by the above propagation. This process clearly demonstrates
the global feature of the propagation.

An important technique in the global propagation is to use LC transforma-
tion. An LC transformation is a one-to-one map from the Euclidean plane to
itself which transforms a line to a line and a circle to a circle. We mainly use
two kinds of LC transformations.

The first LC transformation is as follows. Suppose that segment AB has a
fixed direction and a fixed length. Then point A is on a line or a circle if and
only if point B is on a line or a circle. An example is given in Fig. 2. Suppose
that points A and C have been constructed. Next, we construct point B. Since
� ABC = a1, B is on a circle C1. Similarly, point D is on a circle C2. Since BD
has a fixed direction and a fixed length, point B must be on another circle C3,
which is the transformation of circle C2. B is the intersection of circles C2 and C3.
To construct C3, we first construct the center X1 of circle C2 and then move it
for a distance of |BD| along the direction of BD to obtain the center X2 of C3.
The radius of C3 is the same as that of C2.

The second LC transformation is related to ratio constraints. If points P , Q,R
are collinear, PQ/RQ is known, and one of them, say Q, is already known, then
point P is on a line or a circle if and only if point R is on a line or a circle.
Consider the constraint problem in Fig. 3. Suppose that we have constructed
points A and B. Since � (ACB) = a1, point C is on a circle C1. We construct
the center X2 of circle C1. Since M is the midpoint of BC, by the second LC
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B

C

A

D O

X1

X2 The constraints:
|AC| = d1, |BD| = d2
ANGLE(ABC) = a1, ANGLE(ADC) = a2
ANGLE(BOC) = a3

Fig. 2. An example to show the first kind of LC transformation

A B

C

X2
M

X1

The constraints:
|AB| = d1, |AM| = d2
MID(M,B,C), ANGLE(ACB) = a1

Fig. 3. An example to show the second kind of LC transformation

transformation, point M is on another circle C2. Hence M is the intersection of
circle C2 and the circle with A as center and with d2 as radius.

On the top level, the method works as follows [21]:

1. For a constraint problem

[[Q1, . . . , Qm], [P1, . . . , Pn], [C1, . . . , Cm]],

let CT = {C1, . . . , Cm} be the constraint set, CS = ∅ the construction
sequence, QS = {Q1, . . . , Qm} the points with given construction order, and
PS = {P1, . . . , Pn} the remaining points. We assume that the problem is
not over-constrained, i.e., we have |CT | ≤ 2 ∗ |PS| − 3.
2. Build the GIB as described in [14]. Then repeat the following steps first
for QS and then for PS until both QS and PS become empty.
3. Take a point P from QS or PS. For each constraint Ti ∈ CT involving P ,
decide the locus Lc of the points satisfying Ti, assuming that all points
constructed in CS are known. We then obtain a set of triplets

{(P, T1, Lc1), . . . , (P, Ts, Lcs)}.

Three cases are considered. (1) s = 0. Point P might be an arbitrarily chosen
(free) point. We add a new construction C = (POINT, P ) to CS. (2) There
exist i 
= j such that Ti 
= Tj and Lci and Lcj are not parallel lines or
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concentric circles.1 We add a new construction C = (INTERSECTION, P ,
Lci, Lcj) to CS and remove Ti and Tj from CT . (3) Otherwise, point P
is a semi-free point: it can move freely on a line or a circle. We add a new
construction C= (ON, P , Lc1) to CS and remove T1 from CT .
4. Now we check whether the remaining problem is over-constrained, that
is, whether |CT | > 2 ∗ |PS| (note this inequality is different from the one
in Step 1). (1) If it is over-constrained then the construction sequence is
invalid in this case. If P is from QS, the order given by the user can not
be constructed and the process terminates. Otherwise, restore the removed
constraints and repeat the preceding step for a new point from PS. (2) If
it is not over-constrained, point P is constructed. We need to repeat the
preceding step for a new point.

2.2 Owen’s Graph Decomposition Method

In the graph analysis approach, a constraint problem is first transformed into a
graph whose vertices and edges represent the geometric objects and constraints
respectively. A constraint problem without loops can be represented as trees [62].
Owen introduced a graph analysis method that can handle constraint problems
with loops [53]. Basically speaking, Owen’s algorithm has two steps:

1. Decompose the graph into sub-graphs. A graph is called bi-connected if it is
connected and we cannot find a vertex such that by removing this vertex the
graph becomes two graphs. A graph is called tri-connected if it is bi-connected
and we cannot find two vertices such that by removing these two vertices
and the edge (if there exists one) connecting them, this graph becomes two
graphs. The decomposition procedure is first decomposing the graph into
bi-connected graphs and then decomposing the bi-connected graph into tri-
connected graphs by using algorithms from graph theory [30]. At the final
stage, every sub-graph must has less than three vertices. Otherwise, the
algorithm cannot handle the problem.

2. Assemble the sub-graphs into larger ones. This step is the reverse of the first
step and has two sub-cases for a well-constrained problem.
(a) If two vertices are removed during the decomposition and both vertices

are connected with the same unknown vertex V , then we can construct
the geometric object represented by V in the next step. For instance, if
the two known vertices represent lines and V represents a point P , then
we will take the intersection of the two lines to obtain point P in the
next step.

(b) If a graph is decomposed into three sub-graphs in such a way that each
pair of sub-graphs have a common vertex, then we can assemble the
three sub-graphs together. Since the problem is well-constrained, each
sub-graph represents a rigid part. Let the common vertices represent,

1 We can check these conditions by using automated theorem proving methods such
as Wu’s method [9,68] or the area method [13] which are quite fast.
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say, three points. Since each pair of the points is in a rigid part, we
can compute the distances between them. Then the assembling problem
becomes the construction of a triangle with three known sides.

Let us consider the problem in Fig. 1. Figure 4 (a) is the graph of this
constraint problem, where l1, l2, l3, l4, l5, l6 are lines (not segments) AB, BC,
CX , XD, DE, EA respectively. We will solve this problem in two steps.

l 4
X

D

l 4

D

l 5

E

l 5

D

l 5

E

l 6

(b)

X

D C

E B

A

l 4

l 5

l 6

l 3

l 2

l 1

(a)
Fig. 4. Graph and graph decomposition for the diagram in Fig. 1

1. Decompose the graph into sub-graphs. We first decompose the graph into
three sub-graphs by breaking the graph at vertices X , l1, l6. The sub-
graph l1l6A needs no further decomposition, since it contains three vertices
only. The other two sub-graphs are similar. Figure 4 (b) gives the decompo-
sition for one of them.

l 6

E
D

X

l 6

D l 1 B

C

X

l 1

Fig. 5. Three sub-diagrams of the diagram in Fig. 1

2. Assemble the sub-graphs into larger ones. The three sub-graphs obtained in
the first step of decomposition represent the three diagrams in Fig. 5, which
are easy to construct with ruler and compass. The critical step is to assemble
the three parts into one. Let us note that the respective common vertices
are X , l1, and l6. Since each of the three parts is a rigid body, we know the
distances from X to l1 and l6, and the angle formed by l1 and l6. Then we can
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easily draw a diagram containing X , l1 and l6. The remaining constructions
are easy.

According to the above algorithm, we cannot solve the problem in Fig. 2.

3 Numerical Computation Approaches to AGDC

Numerical methods are usually used as the last resort in the constraint solving
process, because they can be used to solve any kinds of equation systems. The
most commonly-used method in the numerical approach is the Newton-Raphson
method. It is fast, but has the instability problem: the method is sensitive to the
initial values. A small deviation in the initial value may lead to an unexpected
or unwanted solution, or to an iteration divergence. To overcome this difficulty,
recently the homotopy method has been proposed and experimented with [45].
According to the report in [45], generally the homotopy method works much
better in terms of stability. These two methods generally require the number of
variables to be the same as the number of equations.

In [28], a method based on the optimization techniques for solving geometric
constraint problems is proposed. Experiments with this method show that it is
also quite stable. Furthermore, the method can naturally deal with under- and
over-constrained problems.

Generally, a geometric constraint problem can be first translated into a sys-
tem of equations:

f1(x1, . . . , xn) = 0,
f2(x1, . . . , xn) = 0,

· · ·
fm(x1, . . . , xn) = 0.

The optimization approach solves the equation system by converting it into
finding the X at which the sum of squares

σ(X) =
m∑

i=1

fi(X)2

is minimal, where X = (x1, x2, . . . , xn) is the set of variables. It is obvious that
the equation system has a real solution X∗ if and only if minσ(X) is 0. The
problem of solving a system of equations is thus converted into the problem of
finding the minimum of a real multi-variate function. The problem now can be
solved by various well-developed numerical optimization methods [52,17].

One obvious fact for this approach is that the number of equations m is not
necessarily the same as the number of variables n. Thus for this approach, it
is natural to deal with under- and over-constrained problems. Another advan-
tage of this method is that it is not sensitive to the initial value. This feature
is demonstrated in Fig. 6 where the three circles are specified to be mutually
tangent and to be tangent to two neighboring sides of a triangle whose three
vertices are specified to be fixed. Figures 6(a) and 6(c) are the initial diagrams
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sketched by the user. It is easy to see the differences between the initial guesses
from the exact solutions of this problem. Also, this figure demonstrates how
different initial values lead to different branches of the solutions.

(d)

(b)
(a)

Fig. 6. The insensitivity to the inexact initial guesses of the
solutions in the optimization method.

(b)(a)
Fig. 7. A difficult problem. (a) is the initial diagram drawn
by the user. (b) is the diagram generated after all tangent
constraints are added

Figure 6 is the simplest case for the problem we call the tangent packing
problem. The problem is to pack n(n + 1)/2 circles (n rows of circles) tangent
to adjacent circles and/or the adjacent neighboring sides of a given triangle.
Figure 7 is the case of n = 6, i.e., we need to pack 21 circles in the triangle. This
difficult problem contains 174 variables (since we introduce auxiliary tangent
points) and 6 linear equations and 168 quadratic equations which could not
be block triangularized. Table 1 shows the running time for different n of this
problem.
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Table 1. Running statistics for the tangent packing problems

# circles (# rows) # equations # variables time

3 (2) 30 30 0.228
6 (3) 54 54 0.965
10 (4) 86 86 3.379
15 (5) 126 126 11.587
21 (6) 174 174 23.751

4 Symbolic Computation Approaches to AGDC

Theoretically, both the synthetic and numerical approaches are not complete.
Synthetic approaches are not decision procedures even for the case of ruler and
compass construction, i.e., for many problems that can be drawn with ruler and
compass, they cannot give a drawing procedure. Using numerical approaches, if a
solution is not found, we cannot assert that the system does not have a solution.
Also, if we find one or two solutions of a system, we do not know whether
these are all the solutions of the system. To solve these kinds of completeness
problems, we may use the symbolic computation techniques such as Wu-Ritt’s
characteristic set method [68], the Gröbner basis method [7], the Dixon resultant
method [39], and Collins’ cylindrical algebraic decomposition method [15]. For
instance, using Wu-Ritt’s characteristic set method [68] we can give decision
procedures ([22])

1. to construct a constrained diagram with ruler and compass (rc-constructi-
bility);

2. to detect whether a constrained diagram is well-(under-, over-)constrained;
3. to detect whether a set parameters are conflicting, and if they are, find the

relation among them; and
4. to detect whether a constraint is redundant.

Let us consider how to draw a regular pentagon ABCDE with edge r. Let
A = (0, 0), B = (r, 0), C = (x2, y2), D = (x3, y3), E = (x4, y4). Since there are
five points in the diagram, we need 2 ∗ 5 − 3 = 7 constraints. The constraint
|AB| = r is already satisfied automatically. We need six other constraints:

|AB| = |AE|: h1 = y2
4 + x2

4 − r2 = 0
|AB| = |BC|: h2 = y2

2 + x2
2 − 2rx2 = 0

|AB| = |CD|: h3 = y2
3 − 2y2y3 + x2

3 − 2x2x3 + y2
2 + x2

2 − r2 = 0
|AB| = |DE|: h4 = y2

4 − 2y3y4 + x2
4 − 2x3x4 + y2

3 + x2
3 − r2 = 0

|AD| = |DB|: h5 = 2rx3 − r2 = 0
|AC| = |CE|: h6 = y2

4 − 2y2y4 + x2
4 − 2x2x4 = 0.

Wu-Ritt’s characteristic set method [68] can be used to represent the zero set
of any polynomial equation system as the union of the zero sets of polynomial sets
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in triangular form. There are methods to find all solutions of a set of polynomial
equations in triangular form. Let Zero(PS) be the set of all zeros or solutions of
the polynomial equation system PS and Zero(PS/D) = Zero(PS) − Zero(D)
for a polynomial D. Using Wu–Ritt’s characteristic set method to the pentagon
problem, we have

Zero({h1, . . . , h6}) = ∪4
i=1Zero(TSi/Ii)

where TSi and Ii are given below.

TS1 = TS2 = TS3 = TS4 =
y4 − y2 ry4 + (2x2 − 2r)y2 y4 − y2 y4

x4 + x2 − r 2x4 − 2x2 + r x4 + x2 − r x4 + r
ry3 + (−2x2 + r)y2 ry3 + (2x2 − 3r)y2 ry3 + (2x2 − 3r)y2 y3 − y2

2x3 − r 2x3 − r 2x3 − r 2x3 − r
4y2

2 − 2rx2 − r2 4y2
2 − 2rx2 − r2 4y2

2 − 2rx2 − r2 4y2
2 + 5r2

4x2
2 − 6rx2 + r2. 4x2

2 − 6rx2 + r2. 4x2
2 − 6rx2 + r2. 2x2 + r.

I1 = I2 = I3 = r and I4 = 1. TS4 does not have non-zero solutions, since it
contains 4y2

2 + 5r2. Each of TS1, TS2, and TS3 contains six polynomials and
has total degree four, i.e., for a non-zero value of r, each of TS1, TS2, and TS3

generally gives four solutions to the problem (see Fig. 8).

4.1 Well-, Under-, and Over-Constrained Systems

A constraint system is called

– well-constrained if the shape of the corresponding diagram has only a finite
number of cases;

– under-constrained if the shape of the corresponding diagram has infinite
solutions;

– over-constrained if the corresponding diagram has no solution.

These properties are quite difficult to detect, so people usually use another kind
of definition. A constraint system is called

– structurally well-constrained if each of its sub-diagram with n points and
lines has 2 ∗ n− 3 constraints;

– structurally under-constrained if some of its sub-diagrams with n points and
lines have less than 2 ∗ n− 3 constraints;

– structurally over-constrained if some of its sub-diagrams with n points and
lines have more than 2 ∗ n− 3 constraints.

It is an interesting problem to study what kinds of structurally well-
constrained systems are well constrained. In [54], some results are given. But in
my viewpoint, these kinds of results are more theoretical-oriented than practical-
oriented. Actually we can find many examples to show that structurally well-
and over- constrained diagram could be under-constrained and structurally well-,
under-, and over- constrained diagram could be over-constrained.
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We use the pentagon example to show that sometimes we need more than
2n − 3 constraints to define a constraint system with n points. The following
table gives the result of checking three more geometric conditions on the three
diagrams defined by TS1, TS2, and TS3 by using the automated theorem proving
methods given in [68].

TS1 TS2 TS3

|AD| = |AC| true false false
|BD| = |BE| true true false
|EB| = |EC| true false true

E C

A B

D

(c)

E

D

A B

C

(b)

D

E C

A B

D1

A1 B1

C1 E1

(a)

Fig. 8. Three components for the regular pentagon problem

It is clear that the pentagon problem is well-defined. But the seven indepen-
dent constraints do not properly define a regular pentagon. To define a regular
pentagon, we need to add at least another constraint

|AD| = |AC|: h7 = y2
3 + x2

3 − y2
2 − x2

2.

Now there is only one useful triangular set TS1 in the decomposition:

Zero({h1, . . . , h7}) = Zero(TS1/I1) ∪ Zero(TS4/I4).

But this constraint system is structurally over-constrained. Generally, we
have [22]

Theorem 1. Using Wu-Ritt’s characteristic set method, we may decide whether
a constrained diagram is well-, over-, or under- constrained over the field of
complex numbers.

4.2 Independent and Conflicting Constraints

A set of constraints is said to be independent if no one of them can be removed
and the new constraint system still defines the same diagram. A set of con-
straints is said to be conflicting if no diagram in the Euclidean plane verifies this
constraint system.
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Let us first comment that in the general case there is no connection between
the concepts of independency and the critical number 2n−3. Actually, there are
conflicting and/or non-independent systems with less than 2n − 3 constraints,
as well as non-conflicting and/or independent systems with more than 2n − 3
constraints.

For a constraint system CS, let PS be the corresponding algebraic equations
of the constraints. The conflictness of CS means that PS does not have solu-
tions. In the case of complex number field, this can be decided with Wu-Ritt’s
characteristic set method [68,22]. For the case of real numbers, this can be done
with the quantifier elimination algorithm [15]. For instance, if we want to draw
a regular pentagon with edge 1 and diagonal 2, we will get a conflicting con-
straint system. In other words, Zero(PS) = ∅ where PS consists of equations
for |AB| = |BC| = |CD| = |DE| = |EA| = 1 and |AD| = |DB| = |BE| =
|EC| = 2.

If two dimensional constraints are conflicting, we can find the relation be-
tween the two dimensions. In [42], this is done with the Gröbner basis. In [11,22],
both the Gröbner basis and Wu-Ritt’s characteristic set methods are used to find
such relations. In the regular pentagon problem, we just showed that the edge r
and the diagonal d are two conflicting dimensions. To find a relation between
them, let PS be the set of equations for the constraints |AB| = |BC| = |CD| =
|DE| = |EA| = r and |AD| = |DB| = |BE| = |EC| = d. Using Wu-Ritt’s
characteristic set method, two such relations are found:

d2 + rd − r2 = 0 and d2 − rd− r2 = 0.

Since d and r are positive, the two reasonable solutions are d = 1+
√

5
2 r and

d = −1+
√

5
2 r. The first one represents the case where r is the edge and d is the

diagonal. The second one represents the case where r is the diagonal and d is
the edge.

Let PS be the equation set of a constraint system. This system is not inde-
pendent iff there is a polynomial P in PS such that

Zero(PS − {P}) ⊂ Zero(P ) or Zero(PS − {P}) = Zero(PS). (4.1)

Note that to check (4.1) is actually to prove a geometry theorem. Let Cp be
the geometric constraint of P = 0 and C1, . . . , Cn the geometric constraints
for other equations in PS. Then (4.1) is equivalent to the following geometry
theorem problem

∀ points[(C1 ∧ C2 · · · ∧ Cn)⇒ Cp].

This kind of automated geometry theorem proving problems has been studies
extensively [68,12,38]. We may use these efficient algorithms to prove whether
(4.1) is true.

4.3 A Decision Procedure for Rc-Constructibility

Let Q be the field of rational numbers. We allow ourselves to abuse terms by
saying that the numerical solutions of a diagram can be constructed with ruler
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and compass if the corresponding diagram can be constructed with ruler and
compass. It is well known [37] that a number η can be constructed with ruler
and compass iff there exist n real numbers η1, η2, . . . , ηn = η and n quadratic
equations

Q1(x1) = x2
1 + b1x1 + c1 = 0

Q2(x1x2) = x2
2 + b2(x1)x2 + c2(x1) = 0

· · ·
Qn(x1, x2, . . . , xn) = x2

n + bn(x1, . . . , xn−1)xn + cn(x1, . . . , xn−1) = 0
such that Qi(η1, η2, . . . , ηi) = 0, (i = 1, . . . , n). Since Qi is of degree two, we
can further assume that the bi and ci are linear in the variables x1, . . . , xi−1.
From the above equations, we have the well-known result: An rc-constructible
number must be the root of an equation of degree 2k for some k > 0. Thus
the root of a cubic polynomial equation is rc-constructible iff the polynomial is
reducible. Since we can efficiently factor polynomials with computer algebraic
systems such as Maple [8], the only remaining problem is to decide whether the
roots of polynomial equations of degree 2k are rc-constructible.

Let us consider the simplest case: Decide whether the roots of a quartic
equation

x4 + h3x
3 + h2x

2 + h1x + h0 = 0 (4.2)

are rc-constructible. Let us assume that the quartic polynomial in (4.2) is irre-
ducible. If a root y of (4.2) is rc-constructible, y can be written as the solution
of the following two equations:

x2
1 + bx1 + c = 0

y2 + (−mx1 + f)y − nx1 + g = 0.

Without loss of generality, the first equation can be reduced to x2
1−1 = 0. From

the second equation, we have x1 = y2+fy+g
my+n . Substituting this into x2

1 − 1 = 0,
the numerator is (y2 + fy+ g)2− (my+n)2 = 0. Comparing the coefficients of y
in this equation with that of (4.2), we obtain a set of equations

2f − h3 = 0
m2 − 2g − f2 + h2 = 0
2mn− 2fg + h1 = 0
n2 − g2 + h0 = 0.

Eliminating f , m, and n, we have

8g3 − 4h2g
2 + (2h1h3 − 8h0)g − h0h

2
3 + 4h0h2 − h2

1 = 0. (4.3)

Let g1 be a root of equation (4.3), f1, m1 and n1 solutions for f , m and n with g
being substituted by g1. Then all the roots of equation (4.2) can be obtained
from the quadratic equations

y2 + f1y + g1 ± (m1y + n1) = 0.



246 Xiao-Shan Gao

Therefore, the roots of equation (4.2) can be obtained by successively solving
several quadratic and a cubic equations. Roots of a cubic equation are rc-
constructible iff the cubic polynomial is reducible, i.e., it has a linear factor.
Then we have a method of deciding whether the roots of a quartic equation can
be constructed with ruler and compass. For the solution to the general case,
please consult [22].

Let us consider Pappus’ Problem: Given a fixed point P , a fixed angle AOB,
and a fixed length d, draw a line passing through point P and cutting a seg-
ment of length d between lines OA and OB. Let the segment be XY . Use
the following coordinates: O = (0, 0), A = (w, 0), P = (u, v), B = (w, s), X =
(x1, y1), Y = (x2, 0). If we consider w, u, v, and s as non-zero constants, with
Wu-Ritt’s method, we can find a triangular set which contains the following
quartic equation f = s2(s2 +w2)x4

1−2ws2(vs+wu)x3
1 + (v2 +u2−d2)w2s2x2

1 +
2d2w3vsx1− d2w4v2 = 0. With the method mentioned above, it is easy to check
that this diagram generally cannot be drawn with ruler and compass. With the
above method, we can also prove the following interesting fact: if point P is on
the bisector of angle AOB then the diagram is rc-constructible.

5 Dynamic Geometry

Dynamic geometry is originated in the field of CAI (computer aided instruc-
tion) [20,36], although it can be used in other areas such as linkage design [26]
and computer vision [27]. Many geometry theorem provers also have diagram
generation as an assistant part, e.g., [9,66]. But these graphic editors are for
constructive geometry statements. In this paper, we use dynamic geometry as
an effective tool of generating geometric diagrams in GCS problems such as
linkage design, computer vision, and CAI.

By dynamic geometry, we mean models built by computer software that
can be changed dynamically [41]. The basic properties of dynamic models are:
dynamic transformation, dynamic measurement, free dragging, animation, and
locus generation [25,26]. By doing dynamic transformation and free dragging, we
can obtain various forms of diagrams easily and see the changing process vividly.
Through animation, the user may observe the generation process of curves or the
figures of functions and get an intuitive idea of the properties of the functions
and curves. Furthermore, we can combine free dragging with locus generation to
give a powerful tool of showing the properties of curves or functions.

Geometry Expert (GEX) [24] is a program for dynamic diagram drawing and
automated geometry theorem proving and discovering. As a dynamic geometry
system, GEX can be used to build dynamic visual models to assist teaching and
learning of various mathematical concepts. As an automated reasoning system,
we can build dynamic logic models which can do reasoning themselves. Logic
models can be used for more intelligent educational tasks, such as automated
generation of test problems, automated evaluation of students’ answers, intelli-
gent tutoring, etc.
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With Geometry Expert, we can build the following classes of dynamic visual
models.

1. Loci generated by diagrams constructed by using ruler and compass. This
class includes conics, trigonometric functions and the following curves built
with Horner’s construction [25]:
(a) Rational functions y = f(x)

g(x) .

(b) Functions of the form y = n
√
f(x).

(c) Diagrams for any rational plane curves defined by their parametric equa-
tions

x =
P (t)
R(t)

, y =
Q(t)
R(t)

where P,Q,R are polynomials in t.
(d) Interpolation polynomials. For n distinct points (xi, yi), i = 1, . . . , n,

draw the diagram of a polynomial y = f(x) such that yi = f(xi).
2. Diagrams of functions using numerical computation. This class includes func-

tions of the form: y = f(x) where f(x) could be any “elementary functions”–
ax, xa, log(x), trigonometric functions – and their arithmetic expressions and
compositions. This part is quite similar to a “Graphic Calculator,” but is
more flexible and powerful.

3. Loci generated by linkages with rotating joints alone. As proved by
Kempe [40], this class includes any algebraic curve f(x, y) = 0 where f(x, y)
is a polynomial in x and y.

To demonstrate how to use free dragging and locus generation, we consider
the following problem. LetH be the orthocenter of triangleABC. We fix points A
and B and let point C move on a circle c. We want to know the shape of the
locus of point H . Let (x0, y0) and r be the center and radius of circle c, and
A = (0, 0), and B = (d, 0). With the method in Section 6.1, we can derive the
equation of this locus

((x− x0)2 + y2
0 − r2)y2 + 2y0(x− d)xy + (x− d)2x2 = 0.

But from this equation, it is still difficult to know the shape of this curve. With
dynamic geometry software like Geometry Expert, we can continuously change
the radius of circle c by free dragging and observe the shape of the curve changing
continuously (Fig. 10).

6 Applications: Engineering Geometry

We mentioned before that AGDC is first considered in the community of mechan-
ical CAD. Here we want to show that by considering AGDC in a more general
sense, it can be used to more engineering problems such as linkage design, com-
puter vision, robotics [71,35,73] and geometric modeling [72,23]. AGDC methods
can also be used to solve problems from mathematics, physics, and education.
We call the methods of AGDC and these applications engineering geometry.
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Fig. 9. Shapes of the locus of the orthocenter when the radius of circle c changes.

6.1 Mechanical Formula Derivation

In geometry, the techniques for AGDC have close connection with the so-called
mechanical formula derivation. There are two kinds of formula derivation prob-
lems. One is deriving geometry formulas [69,10,11,65]; the other is finding locus
equations [67,65]. The problem of finding the relation between the edge and the
diagonal of a regular pentagon in Section 4.2 is an example of finding geometry
formulas. In general, all these problems can be considered as finding the manifold
solutions of equation systems of positive dimension [70].

For a geometric configuration given by a set of polynomial equations

h1(u1, . . . , uq, x1, . . . , xp) = 0, . . . , hr(u1, . . . , uq, x1, . . . , xp) = 0

and a set of inequations

{D = d1(u, x) 
= 0, . . . , ds(u, x) 
= 0},

we want to find a relation (formula) between arbitrarily chosen
variables u1, . . . , uq (parameters) and a dependent variable, say, x1. Methods
based on the Gröbner basis [11] and the characteristic set [69,11,65] are given.

An interesting example is Peaucellier’s Linkage (Fig. 9). Links AD, AB, DC
and BC have equal length, as do links EA and EC. The length of FD equals
the distance from E to F . The locations of joints E and F are fixed points on
the plane, but the linkage is allowed to rotate about these points. As it does,
what is the locus of the joint B?

Let F = (0, 0), E = (r, 0), C = (x2, y2), D = (x1, y1), and B = (x, y), n
and m be the lengths of the projections of AD on the direction of line EDB
and on the direction perpendicular to it when E, F and D are collinear. Then
the geometry conditions can be expressed by the following set of polynomial
equations H

h1 = y2
1 + x2

1 − r2 = 0 r = FD
h2 = y2

2 − 2y1y2 + x2
2 − 2x1x2 + y2

1 + x2
1 − n2 −m2 = 0 CD2 = n2 + m2

h3 = y2
2 − 2yy2 + x2

2 − 2xx2 + x2 + y2 − n2 −m2 = 0 CB2 = n2 + m2
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Y

X

B

C

D

A

F
E

Fig. 10. A linkage generating a straight line

h4 = y2
2 + x2

2 − 2rx2 − n2 − 4rn−m2 − 3r2 = 0 EC2 = (n+ 2r)2 + m2

h5 = (x − r)y1 − yx1 + ry = 0 E is on DB,

together with the following set of polynomial inequations D:

d1 = x1 − x 
= 0 B 
= D.

Selecting m, n, r, and y as parameters of the problem, we want to find the
relation among m, n, r, y and x. Using the characteristic set method, we have
found that Zero(H/D) has only one non-degenerate component with the corre-
sponding ascending chain ASC∗

1 . The first polynomial in ASC∗
1 is the relation

x + 2n+ r = 0, which tells us that the locus is a line parallel to the y-axis.

6.2 Parametric Mechanical CAD

A direct application of AGDC is to mechanical CAD systems. Here the advantage
over the traditional CAD systems is not limited to a mere user friendly interface.
In the constraint based system, the user may specify a design figure without
knowing its shape previously which cannot be done in traditional CAD system.
The constraint based system will find all the possible shapes of the specified
system automatically. This is especially important in the phase of conceptual
design.

For instance, for the diagram in Fig. 11, if the radius of circle B is known
then this diagram is easy to draw. If we do not know the radius of this circle
but instead we know that this circle passes through a known point A, then this
diagram is not so easy to draw with ruler and compass. This problem is actually
one of the ten Appolonius’ construction problems [21]. A solution to this problem
generated by the global propagation method is given below.

Suppose that O1 and O2 are two known circles and A is a known point.
We need to construct a circle B which is tangent to circles O1 and O2 and
passes through point A. Figure 11 (b) shows the solution given by the global
propagation method. By a construction rule [21], line UV passes through the
similarity center of circles O1 and O2, i.e., the intersection W of line O1O2 and a
common tangent line T1T2 of the two circles (which is easy to construct). Let S
be the intersection of the circle passing through T1,T2,A and the circle with O2
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as center and passing through T2, H the intersection of lines AW and T2S.
Then O2V is perpendicular to HV . Now, we can construct point V . Point U can
be constructed easily.

T1 T2

O1

O2
V

U B

A

(a)

T1 T2

O1

O2
W

V

U B K
A

S
H

(b)

Fig. 11. Appolonius’ construction problem and CAD

6.3 Linkage Design: A Realization of Kempe’s Linkage

In Section 6.1, we introduce a linkage to generate a straight line. It is also able
to design linkages to generate conics [26]. So it is natural to ask: What kinds of
curves can be drawn with linkages? This problem has been answered theoretically
by Kempe [40] who proved that any algebraic plane curve can be generated with
a linkage. With the AGDC techniques reported in Sections 2, 3, and 4, we may
design a linkage automatically that can be used to draw a plane algebraic curve.
First, we need three kinds of tools.

1. The Multiplicator shown in Fig. 12 (a) consists of similar crossed paral-
lelograms. Using a multiplicator, we may obtain integral multiples of any angle,
e.g. aϕ or bθ.

Fig. 12. Three tools for linkage construction

2. The Additor. Joining one multiplicator to another will produce the com-
bination aϕ ± bθ. This is the mechanism shown in Fig. 12 (b) where the plate
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BOK with angle β is connected rigidly to the bar. Thus we build up a linkage
to produce � BOK = aϕ ± bθ ± β. If OB is taken equal to A, the x-coordinate
of the point B is A× cos(aϕ± bθ ± β).

3. The Translator shown in Fig. 12 (c) consists of parallelograms with OB
pivoted at O. In this linkage, the bar O′B′ is always parallel to OB and can be
moved freely within its limits.

Let the algebraic plane curve be defined by the following equation

f(x, y) = 0. (5.1)

We construct a parallelogram (Fig. 13 (a)) such that OA and OB have lengths m
and n and form angles θ and ϕ with the X-axis respectively. P is a point on the
curve. Its coordinates are then given below:

x = m× cos θ + n× cosϕ; (5.2)
y = m× sin θ + n× sinϕ = m× cos(π/2− θ) + n× cos(π/2− ϕ) (5.3)

Note that the products and powers of cosines can be expressed as the sum
of cosines. When substituting equations (5.2) and (5.3) into (5.1), we shall have
a sum of terms of the following form

f(x, y) =
k∑

i=1

Ai × cos(aiϕ± biθ ± βi) + C = 0 (5.4)

where Ai and C are constants; ai and bi are positive integers; and βi equals 90,
or 0.

Fig. 13. Realization of Kempe’s linkage

For each term Ai × cos(aiϕ ± biθ ± βi), we can use the multiplicator and
additor to construct a link OCi such that OCi is of length Ai and forms an
angle aiϕ± biθ ± βi with the X-axis. Using the translators, we can construct a
chain of links OB1, B1B2, B2B3, . . . , as shown in Fig. 13 (b), such that B1 = C1

and OCiBiBi−1 is a parallelogram. Therefore, point Bn has x-coordinate:

X =
∑n

i=1 Ai×cos(aiϕ± biθ ± βi) = f(x, y)− C (by equation (5.4)).
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If P is moved along the given curve, its coordinates x, y satisfy: f(x, y) = 0.
Accordingly, the locus of the end point Bn of the chain is

X + C = 0,

a straight line parallel to the Y-axis. Conversely, if Bn is moved along this line
(with the help of a Peaucellier cell, for instance) point P will generate the curve
f(x, y) = 0. We thus finish the construction.

After the construction of the chain of points B1, . . . , Bn, we need to let
point Bn move on line X + C = 0, and for a given position of Bn we find the
positions of other points by using a numerical method, such as the optimization
method introduced in Section 3. For examples of Kempe linkages, see [26].

6.4 Pose Determination: The PnP Problem

The Perspective-n-Point Problem (PnP ), also known as the Location Determi-
nation Problem (LDP ) [18] or the Exterior Camera Calibration Problem [31],
originates from camera calibration [18]. It is to determine the exterior parame-
ters: the position and orientation of the camera with respect to a scene object
from n points. It concerns many important fields, such as computer animation,
computer vision, image analysis and automated cartography, robotics, etc. Fis-
chler and Bolles [18] summarize the problem as follows:

“ Given the relative spatial locations of n control points Pi, and given
the angle to every pair of control points from an additional point called
the Center of Perspective (CP ), find the lengths of the line segments
joining CP to each of the control points.”

Let xi = |CPPi|, aij = |PiPj |, and pij = cos(� PiCPPj). Applying the cosine
theorem to triangles PiCPPj , we obtain the PnP equation system:

x2
i + x2

j − 2xixjpij − a2
ij = 0, (i = 1, . . . , n; j = i + 1, . . . , n).

The study of the PnP problem mainly consists of two aspects:

Diagram Construction. Design fast and stable algorithms that can be used
to find all or some of the solutions of the PnP problem.

Solution Classification. Give a classification for the solutions of the PnP
equation system, i.e., give explicit conditions under which the system has
none, one, two, . . . number of physical solutions.

There are many results for the first problem and the second problem is not solved
completely.

All three kinds of AGDC techniques studied in this paper can be used to
attack this problem. In [27], the synthetic approach and the symbolic computa-
tional approach are used to study the P3P problem. In [75], symbolic computa-
tion methods are used to the solution classification problem.
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In the symbolic computation approach, Wu-Ritt’s zero decomposition algo-
rithm [68] is used to find a complete solution decomposition for the P3P equation
system. The decomposition has the following implications. First, it provides a
complete set of analytical solutions to the P3P problem. Previous work usu-
ally consider the main solutions and omits many special cases. This might cause
trouble when the given data is from the special case. Second, by expressing all
solutions in triangular form it provides a fast and stable way for numerical solu-
tion. Third, it provides a clear solution space analysis of the P3P problem and
thus provides a good starting point for multiple solution analysis.

In the geometric approach, the three perspective angles are considered sepa-
rately. Then the locus of the control point in each case is a torus and the control
point is the intersection of the three tori. In this way, we give some pure geo-
metric criteria for the number of solutions of the P3P problem. One interesting
result is

Theorem. The P3P problem can have only one solution if all the three angles
formed by the three control points are obtuse.

For the special case a12 = a13 = a23 = 1 and p12 = p13, the following solution
classification for the P3P problem is given in [27]. For the sake of simplicity, we
use two new parameters p12 = r and p23 = p.

Fig. 14. Solution classification for a12 = a13 = a23 = 1 and p12 = p13 L1 is
p = 1+q2

2 , L2 is p = 2q2 − 1, and L3 is p = 3
2 − 1

2q2 . The number of solutions on
the curves are omitted in this diagram.
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1. Point P has four solutions, if and only if

1 > q > 1
2 ,

1+q2

2 > p > 1
2 , and p > 3

2 − 1
2q2 .

2. Point P has three solutions, if and only if
{

1
2 < q <

√
2

2
3
2 − 1

2q2 < p ≤ 1
2 .

or
{ 1

2 < q < 1
p = 1+q2

2 .

3. Point P has two solutions, if and only if
{

0 < q ≤ 1
2

1
2 < p < 1+q2

2 .
or

{ 1
2 < q < 1
1+q2

2 < p < 1

or

{ √
2

2 < q < 1
1
2 < p ≤ 3

2 − 1
2q2 and p > 2q2 − 1.

4. Point P has one solution, if and only if

{
−

√
3

2 < q < 1
2 or

√
2

2 ≤ q <
√

3
2

2q2 − 1 < p < 1
2

or

{
1
2 < q <

√
2

2
2q2 − 1 < p ≤ 3

2 − 1
2q2

or
{

0 < q ≤ 1
2 or

√
2

2 ≤ q <
√

3
2

p = 1
2

or
{

0 < q ≤ 1
2

p = 1+q2

2 .
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Abstract. This paper proposes a DOF-based graph reduction approach
to geometric constraint solving. The proposed approach incrementally
solves a geometric constraint problem that is not ruler-and-compass con-
structible by incrementally identifying a set of constrained geometric en-
tities with 3 DOF (degree of freedom) as a rigid body and determining
the geometric entities in the rigid body using one of the two solving pro-
cedures: algebraic method and numerical method, instead of solving it
simultaneously using a numerical method. However, the use of the nu-
merical method is restricted to solve only those parts that must be solved
numerically. By combining the advantages of algebraic solving with the
universality of numerical solving, the proposed method can maximize the
efficiency, robustness, and extensibility of a geometric constraint solver.

Keywords: Parametric design, variational design, graph reduction, con-
structive constraint solving.

1 Introduction

Parametric design is an approach to product modeling, which associates engi-
neering knowledge with geometry and topology in a product design by means of
geometric constraints [3]. It allows users to make modifications to existing de-
signs by changing parameter values. For this reason, parametric design has been
considered an indispensable tool in many applications such as mechanical part
design, tolerance analysis, simulations, kinematics, and knowledge-based design
automation: [11,15,21,25,26].

Many research efforts have been made toward improving parametric design
functionality. One of the main efforts is to develop a geometric constraint solver
that can solve a geometric constraint problem efficiently and robustly. There are
three major approaches to solving a geometric constraint problem: 1) numerical
approach, 2) constructive approach, and 3) symbolic approach.

In the numerical approach, geometric constraints are converted into a system
of numerical equations: [12,22]. Then, the system of equations is solved simul-
taneously by an iterative numerical method. This approach can solve a variety
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of geometric configurations including ruler-and-compass constructible and ruler-
and-compass non-constructible configurations since any well-constrained prob-
lem that can be represented as a set of equations can be, in theory, solved by
numerical techniques. However, along with this advantage come some significant
shortcomings [17]:

– Numerical techniques have a number of problems related to numerical sta-
bility and solution consistency.

– The number of iterations required to solve a set of constraint equations can
vary substantially, depending on initial conditions given to the solver.

– Numerical techniques are relatively inefficient.
– Numerical techniques cannot distinguish between different roots in the solu-

tion space.

Due to the limitations of the numerical approach mentioned above, most
parametric design systems adopt the constructive approach as a fundamental
scheme for solving geometric constraints.

In the constructive approach, geometric constraints are represented by a set of
knowledge such as graphs or predicate symbols: [2,4,7,9,13,14,20,23,27,28,29,30].
In this approach, a constraint solver satisfies the constraints by incrementally
processing the set of knowledge. Usually, the solver takes two phases of geometric
constraint solving: a planning phase and an execution phase. During the first
phase, a sequence of construction steps is derived using a graph-based technique
or a rule-based technique. During the second phase, the sequence of construction
steps is carried out to determine geometric entities. The main advantage of
the constructive approach is that it separates the symbolic aspects from the
numerical aspects so that those usual problems such as numerical instabilities
associated with the numerical approach can be minimized.

Many research efforts have been made toward constructive geometric con-
straint solving. Owen [23] and Bouma et al. [4] presented graph reduction ap-
proaches to geometric constraint solving. Owen proposed a graph-based con-
structive solver in which a constraint graph is analyzed for triconnected com-
ponents. DCM is a commercial constraint solver based on the Owen’s method.
Bouma et al. proposed a similar approach and, further, extended it to deal with
more complex configurations. Moreover, Fudos et al. [7] extended Bouma et al.’s
approach to deal with under-and over-constrained geometric constraint prob-
lems. Ait-Aoudia et al. [1] proposed a graph reduction method based on the
bipartite graph analysis that decomposes a well-constrained system into irre-
ducible ones. Latham et al. [19] proposed an algorithm for processing geometric
constraints based on the connectivity analysis between constraints and geometric
entities. These researchers have done excellent work on this approach. However,
there is still much work to be done. For instance, they might have some strong
assumptions; 1) the graph of constraints is biconnected [23], 2) it is hierarchi-
cally reducible into triangles or 3) all geometric entities have exactly 2 degrees
of freedom (i.e. the radius of all circles must be known): [4,7]. Moreover, there
may be no effective way of solving each set of irreducible configurations that has
been decomposed by the graph reduction analysis: [1,19].
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Lee and Kim [20] proposed a graph-based rule inferencing method, which can
overcome an inefficient geometric reasoning process of rule-based inferencing
methods. Nevertheless, it can only deal with ruler-and-compass constructible
configurations. Gao et al. [9] proposed a rule-based approach to solving a large set
of complex geometric configurations but could not overcome inefficient geometric
reasoning.

In the symbolic approach, the constraints are translated into a system of
algebraic equations. The system is then solved with symbolic methods such as
Wu’s method or Gröbner basis computation: [6,10,16]. The method can solve
general nonlinear systems of algebraic equations but may require exponential
running time.

Figure 1 shows two models that require sophisticated solving techniques. The
triangle in Fig. 1(a) is well constrained, apart from rigid body translation and
rotation. Though this configuration is seemingly very simple, it is difficult for
some constructive approaches to solve the constraints since it requires reasonably
sophisticated ordering of construction steps. The model in Fig. 1(b) cannot be
solved by current constructive methods since it partially requires a numerical
solving technique or another technique to determine the geometric entities. These
examples show that the constructive method alone cannot solve a variety of
geometric configurations.

Fig. 1. Configurations that require sophisticated solving techniques

In this paper, we propose a DOF-based graph reduction approach to geomet-
ric constraint solving. The proposed approach employs a graph-based construc-
tive approach globally and a numerical approach locally. The constraint solving
process consists of two phases: (1) planning phase and (2) execution phase. In
the planning phase, we incrementally identify a set of constrained geometric en-
tities with 3 DOF (degree of freedom) as a rigid body that may be either ruler-
and-compass constructible or ruler-and-compass non-constructible. A sequence
of construction steps is generated as the result of this graph-based reduction
process. In the execution phase, each construction step is evaluated sequentially
to determine the geometric entities in the associated rigid body using one of
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three solving procedures: (1) algebraic procedure, (2) symbolic procedure, and
(3) numerical procedure. The algebraic procedure determines the geometric enti-
ties in the rigid body by calculating their positions and orientations if they are
ruler-and-compass constructible and the symbolic or numerical procedure if they
are ruler-and-compass non-constructible. Using the proposed approach, thus, we
can incrementally solve a geometric constraint problem that is not ruler-and-
compass constructible, instead of solving it simultaneously using a numerical
method. However, the use of the numerical method is minimized. By combining
the advantages of algebraic solving with the universality of numerical solving,
the proposed method can maximize the efficiency, robustness, and extensibility
of a geometric constraint solver.

The remainder of this paper is organized as follows. Section 2 describes an
overview of the proposed geometric constraint solver. Section 3 presents the con-
struction plan generation phase. Section 4 describes the plan evaluation phase.
Section 5 shows implementation results. Section 6 presents a conclusion with
some remarks.

2 Overview

A geometric constraint problem is defined by a geometric model consisting of a
set of geometric entities and a set of geometric relations, called constraints. In
this paper, we consider only well-constrained problems and exclude relations on
dimension variables and inequality constraints. Geometric entities used in the
paper include points, lines, circles, line segments, and circular arcs. Constraints
include incidence, distance, angle, parallelism, concentricity, tangency, and per-
pendicularity. A geometric entity has its own degrees of freedom, which allow
it to vary in shape, position, size, and orientation. For example, a point and a
line have two degrees of freedom (DOF), and a circle has three DOF. On the
other hand, a geometric constraint reduces the DOF of the geometric model by
a certain number, called the valency of the constraint, depending on the con-
straint type as shown in Table 1 [2]. In order for a set of geometric entities to be
constrained fully, all their degrees of freedom must be consumed or taken up by
geometric constraints. The geometric model can be represented by a constraint
graph in which nodes are geometric entities, and edges are geometric constraints.

The proposed constraint solving process consists of two phases: (1) planning
and (2) execution. In the planning phase, a sequence of construction steps is
generated by incrementally forming rigid bodies with three DOF (two transla-
tional, one rotational), called clusters. A rigid body is a set of geometric elements
whose position and orientation relative to each other are known. At each clus-
tering step, a rigid body with three degrees of freedom, consisting of geometric
entities and/or clusters and geometric constraints, is identified and combined
into a single merged cluster, Ri. This cluster formation process continues until
the reduced constraint graph becomes a single cluster. In the execution phase,
each construction step is evaluated to derive positions and orientations of the
geometric entities in the cluster by selecting an appropriate procedure among
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Table 1. Geometric constraints and their valency

Constraint Type Associated Geometric Entities Valency

Point, Point 1
Point, Line 1

Distance Point, Circle 1
Line, Circle 1
Line, Line 2

Incidence Point, Line 1
Point, Circle 1

Coincidence Point, Point 2
Line, Line 2

Tangency Line, Circle 1
Circle, Circle 1

Angle Line, Line 1

Parallelism Line, Line 1

Concentricity Point, Circle 2

the three constraint solving procedures described in Section 4, considering the
clustering type.

Notations being used throughout the paper are summarized below:

– Li, Ci, and Pi represent a line, a circle, and a point, respectively.
– Gi represents a geometric entity (or a cluster) with two DOF.
– Ri represents a cluster (or a geometric entity) with three DOF.

3 Plan Generation

If a geometric constraint model is well-constrained as shown in Fig. 2, a sequence
of construction plan, as shown in Fig. 3, is generated by two phases; 1) prepro-
cessing the pairs of adjacent geometric entity nodes constrained by the geometric
constraints with two DOF as shown in Fig. 4, and 2) forming rigid bodies that
have one of the clustering types shown in Fig. 5. Each set of nodes/edges in
Fig. 5 is reduced into a cluster with 3 DOF. The preprocessing and clustering
procedures are described in more detail below.

3.1 Processing the Constraint Graph

Most of geometric constraints take up one DOF, but there are some constraints
that consume two DOF, as shown in Table 1 and Fig. 4. A distance dimension
between two lines specifies both parallelism and distance so that it takes up
two degrees of freedom. A coincidence constraint between two points also takes
up two degrees of freedom, as does a concentricity constraint. These geometric
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Fig. 2. A simple design and its constraint graph

Fig. 3. Clustering steps for the design shown in Fig. 2

Fig. 4. Constraints that reduce two degrees of freedom
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Fig. 5. Clustering types: (a), (b): ruler-and-compass constructible; (c1), (c2):
extended ruler-and-compass constructible; and (c3), (d): ruler-and-compass non-
constructible

constraints and their associated geometric entities are combined into a special
type of clusters with 2 DOF. In the proposed approach, a cluster with 2 DOF is
treated as a pseudo geometric entity. During the preprocessing, thus, the set of
a geometric constraint with 2 valency and its two associated geometric entities
is identified and combined into a (pseudo) geometric entity as shown at step 0
in Fig. 3.

3.2 Cluster Forming

Each set of nodes and edges shown in Fig. 5 forms a rigid body with three
DOF. In this incremental clustering procedure, a rigid body with three DOF
is identified and merged into a reduced cluster. By repeating these identifying
and merging procedures, the constraint graph may be reduced to a single cluster
node as shown in Fig. 3. The clustering process is classified into three types:
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(1) ruler-and-compass constructible or RCC, (2) extended ruler-and-compass
constructible or ERCC, and (3) ruler-and-compass non-constructible or RCNC.
An appropriate solving procedure is developed for each of the clustering types
as shown in Table 2 1.

Table 2. Solving procedures according to clustering types

Clustering Types Type Descriptions Related Graphs Solving
in Fig. 5 Procedures

One connecting edge Three G nodes a A

Two connecting edges One G node and one R node b A
Three R nodes d C

One geometric entity c1 B
constrained by three constraints

Three connecting edges One geometric entity c2 B
constrained by two constraints

Each geometric entity c3 C
constrained by one constraint

The geometric configurations shown in Fig. 5(a) and 5(b) are ruler-and-
compass constructible. Thus, they can be efficiently determined by an algebraic
solving procedure [20]. The geometric configuration shown in Fig. 5(c) is not
ruler-and-compass constructible. To solve this configuration effectively, the clus-
ter formation process is further classified into three types, according to the rela-
tions between geometric entities in two clusters: (1) one-to-three, (2) one-to-two,
and (3) one-to-one, as shown in Fig. 5(c1), 5(c2), and 5(c3), respectively2.

One-to-three and one-to-two type configurations are effectively solved by
an extended ruler-and-compass method, whereas one-to-one type clusters are
not. For example, the geometric configurations shown in Fig. 6(a) and 6(b)
are extended ruler-and-compass constructible. The one-to-one type configuration
shown in Fig. 7 is solved effectively by a numerical procedure.

4 Plan Execution

Each construction step is evaluated to derive the relative positions and orien-
tations of geometric entities in the cluster (or rigid body) by executing an ap-
propriate solving procedure described below. A ruler-and-compass constructible
1 A, B, and C represent procedures for solving ruler-and-compass constructible

(RCC), extended ruler-and-compass constructible (ERCC), and ruler-and-compass
non-constructible (RCNC) configurations, respectively.

2 In Fig. 5, Gi represents a geometric entity or cluster with two degrees of freedom. Ri

represents a cluster or geometric entity with three degrees of freedom. Rij represents
a geometric entity in the cluster Ri.
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Fig. 6. Extended ruler-and-compass constructible: (a) one-to-three, (b) one-to-
two

configuration is determined by an algebraic solving procedure: [20,21]. This pro-
cedure sequentially calculates the position and orientation of each undetermined
geometric entity within the cluster by solving the algebraic equations associated
with the constraints. An extended ruler-and-compass constructible is solved by
an extended algebraic solving procedure. This procedure determines the geo-
metric entities by finding a sequence of rotations and translations to satisfy the
geometric constraints. A ruler-and-compass non-constructible cluster is solved by
a symbolic or a numerical method according to its topological structure. These
solving methods are explained below.

4.1 Solving the RCC Clusters

For the configuration shown in Fig. 5(a), we calculate the position and/or orien-
tation of each geometric entity Gi, relative to the other entities within the rigid
body, by solving algebraically the equations associated with the constraints (that
is, evaluating inferred rules, see [20]). For the configuration shown in Fig. 5(b),
we compute the position and orientation of the geometric entity G1, relative to
the cluster R1, by solving the algebraic equations associated with the constraints
between geometric entities in G1 and R1.

4.2 Solving the ERCC Clusters

Considering the geometric entities and their relations in the clusters, an appro-
priate procedure is developed for each type of the extended ruler-and-compass
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Fig. 7. Ruler-and-compass non-constructible

constructible clusters. Each procedure specifies a sequence of rotation & transla-
tion operations that transforms one cluster R1 relative to the other cluster R2 to
satisfy the geometric constraints. As an example, the procedure for the extended
ruler-and-compass constructible cluster shown in Fig. 6(b) is summarized as fol-
lows. In the figure, (i) P2 and P5 in R1, (ii) L3, P1, and P0 in R2, and (iii) P2 is
connected to P1 and L3.

PROCEDURE ONE TO TWO(R1(P2, P5), R2(L3, P1, P0))
INPUT: two clusters R1 and R2

OUTPUT: a merged cluster R consisting of R1 and R2

L = line(P2,normal(direction(L3)))3;
IP1 = intersect(L3, L);
translate(R2, vector-differ(P2, IP ));
C1 = circle(P2, D3);
IP2 = intersect(L3, C1);
translate(R2, vector-differ(IP2, P1));
D =distance(P2, P0);
C2 = circle(P2, D);
C3 = circle(P5, D2);
IP3 = intersect(C2, C3);
A = angle (vector-differ(P0 - P2), vector-differ(IP3, P2));
translate(R2, -P2);
rotate(R2, -A);
translate(R2, P2);
END PROCEDURE
3 A line is assumed to be defined by its direction vector (normal(direction(L3))) and

a point on the line (P2). normal(direction(L3)) represents a vector perpendicular to
direction(L3).
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4.3 Solving the RCNC Clusters

An efficient procedure is developed to solve the ruler-and-compass non con-
structible clusters. For the geometric configuration shown in Fig. 5(c3), the con-
straint problem is solved by finding a transformation matrix that represents the
relation between two clusters R1 and R2. An iterative method based on the
Newton method is used to calculate a parameter, θ, for rotation and two pa-
rameters, dx and dy, for translation that define a 3x3 transformation matrix.
This transformation matrix is used to position the cluster R2 (or R1) relative to
the base cluster R1 (or R2) so that the geometric constraints between the two
clusters are satisfied. The values of the three parameters for the transformation
matrix can be computed by using the iterative Newton’s method given by

X i+1 = X i − F (X i) · (J(X i))−1

where the vector X , function F (X), and Jacobian matrix J(X) are defined as
follows

X =




θ
dx

dy



F (X) =




f1(X)
f2(X)
f3(X)



 J(X) =





∂f1(X)
∂θ

∂f1(X)
∂dx

∂f1(X)
∂dy

∂f2(X)
∂θ

∂f2(X)
∂dx

∂f2(X)
∂dy

∂f3(X)
∂θ

∂f3(X)
∂dx

∂f3(X)
∂dy



 .

A numerical solving procedure can also handle the 3-cluster configuration
shown in Fig. 5(d). Since three clusters are involved, six functions for the New-
ton method are necessary to be defined to compute two transformation matrices
for R2 and R3, relative to R1. The proposed procedure improves the reliability
of the numerical approach by reducing the number of equations to be solved. For
the 2-cluster merging shown in Fig. 5 (c3), for example, we solve three equations
to determine the geometric entities by computing a transformation matrix in this
procedure, instead of 12 equations in conventional numerical methods where 6
geometric entities or 12 DOF are involved. Thus, we can minimize the numerical
instability of a numerical solver. As explained above, the one-to-one type cluster
can be solved effectively by a numerical method. Among these clusters, however,
the clusters with the same configuration as that shown in Fig. 8 can be effec-
tively solved by a symbolic approach such as Gröbner basis computation [4].
Eliminating some variables with Gröbner’s base computation generates a 4th
order polynomial equation. This equation can be easily solved algebraically. The
difference between the two clusters shown in Fig. 7 and Fig. 8 lies in the con-
straint relation in each cluster. The configuration shown in Fig. 8 has a cyclic
relation among geometric entities in each cluster. On the other hand, the con-
figuration in Fig. 7 has no such a relation.

4.4 Extending Clustering Types

The clusters shown in Fig. 5 can solve a large set of geometric configurations
including RCNC. However, it is still needed to extend the solver since it cannot
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Fig. 8. One-to-one type cluster with a cyclic relation

deal with some complex configurations if they require more than three clusters
to satisfy their geometric constraints. Figure 9 shows such an example [9]. The
solver cannot continue the reduction operations because there is no rigid single
loop in the reduced graph. However, the whole graph is well-constrained so that
it can be solved. In this case, the solver takes another type of the rigid loop
identification procedure called multi-circuited loop identification. This procedure
takes several loop identifications and reductions until it finds a rigid subgraph.
The identified rigid subgraph in this procedure is called a multi-circuited cluster.
For the example in Fig. 9, the solver first finds a loop consisting of R1, R2,
and L6, and then reduces it as a cluster C1. At this time, C1 is under-constrained.
After then, it finds another cluster C2 consisting of C1 and R3. Note that C2 is
over-constrained. This compensates for the free DOF remaining in C1 such that
the 2-circuited cluster is well-constrained. Finally, the 2-circuited cluster can be
solved algebraically or numerically according to the geometric structure.

Fig. 9. Solver extension: 2-circuited cluster identification
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5 Implementation

The proposed geometric constraint solving procedures have been implemented
in Visual C++ on Windows NT. Figure 10 shows a snapshot of the developed
constraint solver. Figure 11–14 shows some implementation results. Figure 14
shows a mechanical part and its modified one that are modeled by using the
feature-based parametric modeling system [20].

Fig. 10. A snapshot of the developed constraint solver

Fig. 11. A model with one-to-one type of a RCNC cluster and its modification
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Fig. 12. A model with a multi-circuited cluster and its modification

Fig. 13. A model of the type shown in Fig. 5(d) and its modification

Fig. 14. 3D feature-based parametric modeling: a hinge design and its modifi-
cation
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6 Discussions

We have presented a new DOF-based graph reduction approach to geometric
constraint solving. The proposed approach employs a graph-based constructive
approach globally and a numerical approach locally. The use of the numerical ap-
proach is restricted to solve only those clusters that must be solved numerically.
By combining the advantages of the graph-based constructive approach with the
universality of the numerical approach, the proposed method can maximize the
efficiency and robustness of a geometric constraint solver.

Note that our approach is also based on graph reduction, similar to Bouma et
al.’s approach [4]. However, our method is different from their method in graph
reduction (or cluster formation) process. While their graph reduction method
is based on analyzing node-sharing among clusters, our reduction method is
based on analyzing edge-sharing among clusters and their degrees of freedom.
This allows us to deal consistently with a larger set of ruler-and-compass non-
constructible configurations, as shown in Fig. 5 and Fig. 9. For example, Bouma
et al.’s method can not handle a geometric configuration having a circle with a
variable radius that can be seen in Appollonius’ drawing problems and multi-
circuited clusters as shown in Fig. 12. Our approach is very simple in concept,
but realizes efficient geometric constraint solving.

Some of the future works are listed below:

– For multi-circuited clusters, currently, most of them are solved numerically.
However, some of them can be algebraically [9]. We are extending the solver
to match multi-circuited clusters with rule graphs for algebraic solution
based on the previous research work [17].

– Although we have used a modified Newton-Raphson method with global
convergence property to improve the reliability of the numerical constraint
solving procedure [24], further work is still needed. It may be considered to
adopt the homotopy method [18] for numerical solving.

– Although we have only dealt with well-constrained problems, it is worth
while to handle under-constrained problems. The proposed approach works
well with over-constrained and well-constrained problems. However, it has
difficulties when dealing with under-constrained problems because there ap-
pears to be no reliable way to locally add constraints to transform an under-
constrained problem to a well-constrained one [8]. Thus, the local reduction
analysis is insufficient for under-constrained problems, and a global analysis
is needed. We are trying to deal with under-constrained problems by globally
analyzing the cluster configurations derived by the graph reduction analysis:
[1,19].
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Abstract. This paper deals with modeling and problem solving of vari-
ant geometry in mechanical computer aided design. Enhanced undirected
graph is used as a schema for modeling a constraint geometry system.
Two important techniques called equivalent line segment method and
separable entity group approach are introduced in this paper. These tech-
niques developed by the authors are used to unify and simplify variant
geometry problem solving.

1 Variant Geometry Problems in MCAD

Variant geometry deals with flexible geometry systems in which the geometry
entities are subjected to variant geometric constraints. A variant geometry prob-
lem can be formulated as

[geometry entities, constraints].
Variant geometry has varieties of applications in mechanical computer aided
design (MCAD) [4,1,11,2,3,9,10].

A. Parametric and feature CAD
More than seventy percent of practical designs are adaptive or innovative de-

signs including series product design, adapted to new working condition design,
extending and adding new function design, etc. All of these designs usually begin
with or imitate to a prototype design; they share some common features (topol-
ogy and/or shape) but formed with some variant differences. To effectively deal
with these variant designs, a new generation of design approach called paramet-
ric modeling and/or feature-based modeling has been developed. A new design
can be generated by changing specific parameters and/or by combining appro-
priate predefined features in an intelligent CAD system. The typical application
cases include:

2D parametric drafting. System entities are adjustable and changeable drawing
primitives: line, arc, circle, etc. The subjected constraints are either explicit or
implicit. Explicit constraints are annotated in drawing like dimensional annota-
tions. Implicit constraints are defined by default drawing conventions like some
lines keeping horizontal orientation, some lines keeping vertical orientation, some
related entities tangent to each other.

X.-S. Gao, D. Wang, and L. Yang (Eds.): ADG’98, LNAI 1669, pp. 275–285, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



276 Zongying Ou and Jun Liu

Parametric (also feature-based) solid modeling. System entities are adjustable
and changeable geometric feature objects such as faces, edges, vertices, etc. The
constraints are distance dimension constraints, relative position constraints and
other relations.

B. Evaluation and Synthesis of Kinematics of Mechanisms
A mechanism is also a system of geometry objects subjected to some con-

straints related to each other. Geometry objects are components and component-
like subassemblies. The constraints are rotary connection, sliding connection,
specified kinematics feature limitation including fixed to frame or specified kine-
matics control, etc.

Keeping a mechanism conforming to its given kinematics constraints and se-
quentially changing the position of its driving component, the variant geometry
processing system will generate history positions of the whole mechanism; this
is the simulation procedure for the mechanism. Designers can easily try differ-
ent variances of a mechanism and evaluate the different kinematical behaviors
instantly. This is very useful for optimization of mechanism design.

All the geometry applications are intelligent processes based on automated
deduction in geometry. The processes include the following steps: automatically
establishing the variant model; transforming the constraint conditions into pro-
cessable (calculating and reasoning) relations; generating and evaluating the
variant system by solving the relations. The main issues of a variant geometry
processing are the modeling method and solving approach. Techniques presented
below are developed by the authors for variant processing of parametric drafting
and variant processing of planar linkage mechanism simulation.

2 Model Graph

A variant geometry system is a system composed of a number of geometry enti-
ties related to each other with variant constraint relations. The system structure
can be modeled with an undirected graph [9,10,8]. Nodes of a model graph are
geometric entities of a variant geometry system, and edges connecting the nodes
in the graph represent the constraint relations between the corresponding enti-
ties. A model graph relates the data within a system and is the structure skeleton
in this system database.

For a planar linkage mechanism, the model graph can be express as
mechanism=Graph(B, L, C).

In the above expression, B is the collection of links, B = B1, B2, ..., Bm, where m
is the number of links; L is the collection of constraints, L = L1, L2, ..., Ln,
where n is the number of constraints; C is the constraint relations,

C = ..., Li(R, Bj(Pj), Bk(Pk)), ..., Lt(S, Bu(Pu), Bv(Pv, Pw)), ...,

where R is a rotary connection, Pj , Pk are pivot points, S is a sliding connection,
and Pu, Pv and Pw are points on a sliding surface. Figure 1 shows a planar linkage
mechanism and its model graph, the model graph can also be expressed as Graph
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{B1, B2, B3, B4, B5, B6}, {L1, L2, L3, L4, L5, L6, L7}, L1(R, B1(P1), B2(P1)),
L2(R, B2(P2), B3(P2)), L3(R, B3(P3), B4(P3)), L4(R, B4(P4), B5(P4)),
L5(R, B5(P5), B1(p5)), L6(R, B4(P6), B6(P6)), L7(S, B6(P7), B1(P8, P9)) .

Fig. 1 Linkage mechanism and its model graph

The number of geometry entities in an engineering drawing is much more than
in a mechanism. The constraint relations in a parametric drawing are also more
complicated than in a mechanism. We design an enhanced graph structure for
modeling the system of a variant drawing. Figure 2 shows an example of paramet-
ric drawing, which is composed of 12 geometry entities subjected to dimensional
and other constraints. Fig. 3 shows the graph data structure for the drawing.
The relation and constraint conditions (tangency, symmetry, co-cyclic, concen-
tric) are organized as special link list structures for convenient search and extract
in processing, the data of key points for featuring entities are also included in
the data structure.

Users can define and modify a constraint system interactively; the system
will update the model graph automatically.

3 Equivalent Line Segment Entity Method

The basic types of geometry entities in engineering drawing are line, arc and
circle. A line segment usually is defined with two end points. Every point has two
coordinate parameters. So, the number of degrees of freedom for a line segment
is 4. A circle can be defined with one center point and one radius parameter, so
the number of degrees of freedom for a circle is 3. An arc can be defined with one
center point, one radius parameter, and two independent parameters to locate
the start and end points of this arc, so the number of degrees of freedom for
an arc is 5. To effectively deal with different types of entities, a new method
called equivalent line segment entity method has been developed [9,5,6,8]. With
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this method, all line, arc and circle entities can be transformed into equivalent
entities that are line segments or combination of line segments (Fig. 4).

The equivalent entity of a line is the line segment itself.
The equivalent entity of a circle is a line segment with length equal to the

radius of the circle and one end point coinciding with the center point of the
circle; the other end point is movable and the orientation of this line is not
constrained.

The equivalent entity of an arc is a combination of two equivalent line seg-
ments. These two equivalent line segments are drawn from the center of the arc
to two end points of the arc respectively.

Fig. 2a Parametric process working drawing

Fig. 2b Drawing after parametric process
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Fig. 3 Graph data structure for the drawing in Fig. 2

All the above equivalent entities have the same number of degrees of freedom and
the same feature points as their original entities. During the variant processing,
an entity is treated as an object in object-oriented programming. Every entity
has two forms: original form and equivalent form. These two forms can be inter-
transformed from one form into another form based on the common feature
points. The feature point data and the inter-transformation operation procedures
are encapsulated within entity objects.

Fig. 4 Line, circle, arc and their equivalent entities

Figure 5 shows some drawing examples of equivalent entity transformation. A
circle and a tangent line were transformed into two equivalent lines contacted at
tangent point. Two tangential circles were transformed into two equivalent lines
meeting at tangent point. A contour composed of lines and arcs was transformed
into a contour composed of lines only. The standard form equation for a circle
or an arc is a quadratic polynomial equation; and the equation for a line is a
linear equation.
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Fig. 5 Drawing examples of equivalent entity transformation

When a circle or an arc maintains tangent or intersection relations with other
entities, it is quite cumbersome to process these relations based on quadratic
equations. In the above cases, replacing connected circles or arcs with equivalent
lines drawn from the center point to related feature points (tangent points, inter-
section points, etc.) will lead to simplification of establishing relation equation
procedures. Furthermore, the equations are all linear equations. Transforming
arbitrary drawings composed of different types of geometry entities into draw-
ings composed of unified equivalent line segments will unify the data structure,
regulate the relation equations and significantly simplify the variant processing.

4 Separable Entity Group Approach

All the geometric parameters of a geometric constraint system should be con-
formed to the constraint relations. The whole number of unknown geometric
parameters for a solvable constraint system should be equal to the number of
total constraint equations, if the system is well defined. Usually, a variant pro-
cessing for a constraint system involves a solving procedure of a large number
of simultaneous conditions. Several intelligent approaches have been developed
for solving this constraint problem, including iterative numerical method, geom-
etry reasoning method and graphic constructive method [4,1,11,2]. However, the
difficulty of solving a large number of simultaneous equations exists in all vari-
ant processing systems. Divide and conquer is an effective strategy in practice
for solving large size problems and has been used in different variant process-
ing systems with different implementations. An approach called separable entity
group approach is described in the following, which is also developed based on
the divide and conquer strategy. A large variant system will be decomposed to
several separable entity groups step by step [9,10,7,8]. A separable entity group
is a subsystem of a constraint system, which can be solved independently. The
separability criterion of an entity group is that the total number of unknown
geometric parameters of this group is equal to the number of equations defined
by the related constraint conditions inside this group.

All the geometry entities and constraint relations have been schematically
represented in a model graph. A separable entity group is a linked node cluster
satisfying the separability criterion in a model graph. The basic principle for
extracting separable entity group is searching the possible linked node cluster
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in the model graph and checking the cluster with separability criterion. The
searching procedure is iterative during the variant processing. There might be
multiple-choice of separable entity groups in processing, we prefer that the sepa-
rable entity groups with least number of entities (least number of nodes) should
be extracted and processed first.

The procedure of extracting separable entity groups is incorporated in the
variant processing procedure; the main points of the procedure are as follows

1. Establish two entity lists: the defined entity list and undefined entity list.
An entity is defined if all the necessary parameters for defining this entity
are known.

2. Interpret and transform system constraint conditions into equations. Estab-
lish system constraint equation list.

3. Sequentially check each equation in system constraint equation list. If there
is an equation including only one unknown variable; then solve it, update
entity lists and eliminate this equation from system equation list.

4. Set the limited number of entities in separable entity group NE = 1.
5. Establish new working (candidate) entity group. Select an entity from unde-

fined entity list which is adjacent (related) to a defined entity. Set this entity
as first entity in working entity group.

6. Check the working entity group with separability criterion. If the criterion
is satisfied, go to step 15.

7. Add a new undefined entity to the working entity group, the new undefined
entity should be adjacent (related) to the entities of working entity group.
It is better if the new entity is also adjacent to a defined entity.

8. Set NW equal to the number of entities in working entity group.
9. If NW is not greater than NE, then go to step 6.

10. If NW is greater than NE and the first entity in working entity group is
not the last entity in undefined entity list, then go to step 5 but try to set
other undefined entity as first entity in working entity group.

11. If NW is greater than NE and all the entities of undefined entity list had
been tried as first entity in working entity group, then set NE = NE + 1.

12. If NE is not greater than the number of undefined entities, then go to step
5.

13. If NE is greater than the number of undefined entities, then stop and output
message: “the variant system is under-constrained.”

14. If there is no new entity added to defined entity list after a whole iterative
cycle of variant processing procedure, then stop.

15. Extract the working entity group as a separable entity group; solve the con-
straint equations; and update defined entity list and undefined entity list.

16. If undefined entity list is empty, then stop.
17. Go to step 3.

The running result of linkage mechanism showed in Fig. 1 will be as follows

1. Assume specifying link 1 as the frame (fixed) link and link 5 as the driving
link. The system will update system database and add link 1 and link 5 into
defined entity list.



282 Zongying Ou and Jun Liu

2. Extract link cluster 46 in the model graph as the first separable entity group.
3. Extract link cluster 32 in the model graph as another separable entity group.

The running result of drawing showed in Fig. 2 might be as follows

1. Assume specifying point PA as fixed point and specifying the coordinates
of point PA.

2. Solve linear dimension equations and get the coordinates of point PB and
point P9.

3. Extract entity circle No. 9 as separable entity group.
4. Extract entity circle No. A as separable entity group.
5. Extract entity circle No. B as separable entity group.
6. Extract entity circle No. C as separable entity group.
7. Extract entity cluster (arc No.1-line No.2-arc No.3-line No.4-arc No.5-line

No.6-arc No.7-line No.8) as separable entity group.

Usually, a candidate for separable entity group is an entity cluster linked be-
tween defined entity nodes in a model graph. The proposed approach is efficient
since the extracting processing is performed by directly searching and checking
the separability criterion along the relation path in a system model graph. For
further increasing the efficiency, the following content-oriented features can be
used as rules of thumb for guiding the extracting processing.

– If entities in a node chain form a contour in a drawing, this node chain is
probably a separable entity group.

– If entities in a node cluster form an independent geometric part in a geometry
object, this node cluster is also probably a separable entity group.

– The entities linked between driving components (there might be multiple
driving sources) and fixed component is a good beginning choice as a basic
cluster for further searching in kinematics analysis.

5 Implementation

The CAD and CG Research Institute of Dalian University of Technology already
developed a prototype expert system running on MS-Windows environment for
parametric drafting and simulation of linkage mechanism based on the above
approach. The module for simulation of linkage mechanism was implemented by
using PROLOG language, and the parametric drafting module was implemented
by using C++ language. The prototype system co-works with a conventional
CAD system. The system architecture is showed in Fig. 6. Figure 7 shows a
working display of linkage mechanism simulation and Fig. 8 shows a working
display of parametric drafting. The implementation verified the correctness and
effectiveness of the above method and approach.
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Fig. 6 System architecture

Fig. 7 Working display of linkage mechanism simulation

6 Conclusion

Variant geometry has a very important variety of applications in MCAD, ranging
from geometry design to kinematics in 2D and 3D. Parametric, feature-based
modeling design and variant kinematic analysis are applications of automated
deduction in geometry.

An enhanced graph structure has been designed as structure skeleton for
modeling variant geometry system.

Keeping the same number of degrees of freedom and same feature points, all
the line, arc, and circle entities can be transformed into equivalent line segments.
With the equivalent entity method, a complicated drawing composed of different
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types of entities can be replaced with an equivalent drawing composed of unified
equivalent line segments only in further variant processing.

A separable entity group is a separable subsystem of a variant system, which
can be processed separately. Based on the separable entity group approach, the
variant process of a large variant system can be decomposed to the sequential
variant processes of small size subsystems step by step.

The techniques of equivalent entity method and separable entity group ap-
proach are very useful in variant problem solving. These techniques can also be
applied with other intelligent approaches in variant process.

Fig. 8 Working display of parametric drafting
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